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2 AN EXAMPLE OF SIGNAL ALIASING

1 Introduction

Aliasing is an endemic phenomenon when sampling data at equally spaced intervals. Sig-
nal components above the Nyquist frequency will appear at lower frequencies in the sam-
pled signal, and this will result in an ill-formed signal spectrum. To ensure unbiased mea-
surements it is necessary to suppress, as much as possible, a signal’s energy above the
Nyquist frequency before it is sampled (or digitized).

This note illustrates the effects of aliasing using a synthetic signal (section 2). The lim-
itations of sampling are discussed in section 3 because of their implications for an anti-
aliasing filter. The requirements of an anti-aliasing filter are quantified in section 4 and the
implicit bandwidth limitation of alias-free samples is presented in section 5. The RSI fil-
ter design is found in section 6. This note concludes with brief advice on determining if an
anti-aliasing filter was used in a sampled time series.

2 An example of signal aliasing
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Figure 1: An example of signal aliasing. In each panel, the blue line is the continuous do-
main signal cos(2πft) with the frequency indicated above each panel. The cosine signal is
sampled (red circles) at a rate of fs = 16 s−1 (∆ = 0.0625 s) in all panels.

One way to visualize aliasing is to sample a cosine oscillation at a fixed rate, fs = 1/∆.
For example, fs = 16 s−1 (Figure 1). Samples of a 1 Hz cosine oscillation are not ambigu-
ous (upper panel). When the frequency is raised to 4 Hz (second panel from the top), we
get only 4 samples per cycle, but the frequency of the signal is still not ambiguous. Even if
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2 AN EXAMPLE OF SIGNAL ALIASING

the frequency is increased to the Nyquist frequency, fN = fs/2, (third panel), we sample
the peaks and troughs of the waveform. However, if the phase had been shifted by π/2, we
would have sampled the zero crossings, seen nothing, and possibly concluded that there
was no signal. When the frequency is raised to 15 Hz (second panel from bottom), our
sampling clearly shows a cosine oscillation of 1 Hz and, we get the identical samples when
the frequency is 31 Hz (bottom panel). In fact, we would see a 1 Hz cosine oscillation for
any frequency nfs − 1, where n is any whole number. Aliasing has no bounds.

The message is clear, we must sample a signals at a rate that is at least twice the high-
est frequency in the signal. This amounts to a ‘chicken and egg’ problem. How do we de-
termine the highest frequency in a signal, so that we may sample it at an adequate rate,
other than to actually sample it, which provides an ambiguous result because of aliasing?
The practical solution to this problem is to construct the measurement system so that the
signal is intentionally low-pass filtered to remove (or at least strongly attenuate ) the sig-
nal for all frequencies higher than the Nyquist frequency. This part of the continuous do-
main processing is usually the last stage of the signal conditioning. These filters are called
anti-aliasing filters to reflect their purpose.

Before we can quantitatively specify or choose an anti-aliasing filter, we must first examine
some limitations of sampling.
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3 DATA QUANTIZATION

3 Data quantization

Up to here, we have been rather vague about the value of a sample and implicitly assumed
that it is identical to the value of the signal at the moment of sampling. This is unrealis-
tic. A physical signal (temperature, pressure, velocity, etc.) is continuous in both time and
value. For example, if the temperature is decreasing from 4 ◦C to 3 ◦C, then it will at some
moment during that cooling have a temperature of π ◦C.

The sampled data must be represented by a finite number of digits or bits. This means
that it is quantized into discrete levels. For example, if a system measures a signal, s(t),
over a range from sl up to su, and the values are quantified by a B-bit number, then there
are 2B quantum levels for the samples, and the step size of the quantum levels is

δs =
su − sl
2B − 1

≈ su − sl
2B

. (1)

The difference, su − sl, is usually called the full-scale range of a measurement system. The
number of steps in a staircase is one less than the number of levels and, if B > 10, the
difference between these two numbers is inconsequential.
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Figure 2: An example of the quantization of the samples, sn, of a continuous signal s(t). The
ideal sampler assigns the nearest quantum level (black horizontal lines) to the samples.

The ideal sampler will assign the measured value to the nearest quantum level which would
produce the data [7, 6, 6, 5, 4, 5, 6 and 6] for the example in Figure 2.

It is now quite common for the sampler (which is also called an analog-to-digital converter,
or ADC) to provide 16-bit values. The step size (1) is then about 1.5 × 10−5 of the full-
scale range of the instrument. Some samplers provide up to 24-bit values.

Because the data are quantized, every sample is wrong but, ideally, by no more than ±δs/2.
Good samplers get within a factor of 2 of the ideal quantization. The samples are, effec-
tively, the true value of the signal plus random noise. Because the physical signal is con-
tinuous in value, the error of the samples taken with an ideal sampler must be uniformly
distributed over the range of ±δs/2. The probability density function of such a uniformly
distributed random variable is

p(x) =
1

δs
|x| ≤ δs/2

= 0 |x| > δs/2 .
(2)
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3 DATA QUANTIZATION

The mean error is the first moment of the probability density function

µ =

∫ ∞

−∞

1

δs
xdx =

1

δs

∫ δs/2

−δs/2

x dx = 0 (3)

and so the ideal sampler does not bias the data. This means, among other things, that the
average of your samples converges to the true mean of the signal. However, the variance of
the error

σ2 =

∫ ∞

−∞

1

δs
x2dx =

1

δs

∫ δs/2

−δs/2

x2 dx =
2

δs

1

3

(
δs
2

)3

=
δ2s
12

(4)

is not zero. Your data are the actual values of the signal plus uniformly distributed noise
with a standard deviation of δs/

√
12. This additional noise is called the sampling noise,

or the quantization noise. The sampling noise cannot have any particular frequency and,
therefore, it must be white and uniformly distributed over the Nyquist band, which means
that the spectrum of this noise is φδs = δ2s/(12fN), where fN = fs/2 is the Nyquist fre-
quency.

Your estimate of the spectrum of a signal is never smaller than the sampling noise. For ex-
ample, the vibration spectra of Figure 3 flatten out to the sampling noise of 7 × 10−4 counts2/Hz
1 , near the Nyquist frequency, even though the continuous domain signals are attenuated
to a lower level by the anti-aliasing filters. For the example of Figure 3, the ideal sampling
noise (magenta) is

φδs =
δ2s

12fN
=

1

12× 256
= 3.3 × 10−4 counts2/Hz (5)

which is only two times smaller than the actual sampling noise (black).

The sampling noise variance is independent of the rate of sampling, and the noise spec-
trum decreases with increasing sampling rate. This is the main benefit of over sampling a
signal.

1The data samples are just integer numbers and are, therefore, dimensionless. However, it is common
to present values in units of counts to indicate explicitly their lack of dimensionality.
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3 DATA QUANTIZATION
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Figure 3: The spectra from two vibration sensors, Ax and Ay, that have not been converted
into physical units. The signals were sampled at 512 s−1. The anti-aliasing filter was a cas-
cade of two 4-pole, low-pass, Butterworth filters with an effective cut-off frequency of 98 Hz.
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4 THE MINIMUM REQUIREMENTS OF AN ANTI-ALIASING FILTER

4 The minimum requirements of an anti-aliasing filter

We can now quantify, in a semi-object manner the attenuation requirements of an anti-
aliasing filter. The bandwidth of the analog-domain portion of a data sampler is astonish-
ingly broad, typically up to several mega-hertz, which means that the sampler will see sig-
nals (and noise) up to very high frequency. This is true regardless of the rate of sampling!
Therefore, it is important to strongly attenuate a signal at high frequency even if you are
sampling at very modest rates. We will consider two cases – frequency independent noise,
and an unwanted sinusoidal signal above the band of interest.

4.1 Frequency-independent noise

If the unwanted signal is frequency-independent continuous-domain noise, then we want
the variance of this noise, after it is filtered, to be small compared to the sampling noise of
δ2s/12. That is, we want

σ2
N A2 � δ2s

12
(6)

where σ2
N is the noise variance and A is the attenuation of the filter. If the noise is ap-

proximately Gaussian, then its standard deviation is approximately one-sixth of its peak-
to-peak fluctuation. The peak-to-peak fluctuation is at most comparable to the full-scale
range of the sampler, 2Bδs, and we can use this value for the maximum possible noise.
Therefore,

A� δs

2
√
3

1

σN
=

δs

2
√
3

6

2B δs
= 2−B

√
3 . (7)

For a 16-bit sampler, with B = 16, A should be small compared to 2.5 × 10−5. The el-
liptic anti-aliasing filter of Figure 4 (blue) meets this requirement at a frequency that is 2
times higher than the cut-off frequency. However, the transfer function of this elliptic filter
does not asymptotically go to zero. For this reason, a Butterworth filter (Figure 4, green)
is often preferred for anti-aliasing, if a less steep attenuation with respect to frequency is
acceptable.

4.2 Sinusoidal noise

If the unwanted signal is a sinusoidal oscillation, then the peak-to-peak amplitude of this
oscillation, 2α, is at most comparable to the full-scale range of the sampler. Therefore, the
maximum value of the periodogram, at the frequency of oscillation, is

ψS(f) =
1

2
A2α2 T . (8)

where T is the length, in seconds, of the data segments used in each fast Fourier transform
(FFT) to construct the periodogram. We would like this contribution to the spectrum to
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4 THE MINIMUM REQUIREMENTS OF AN ANTI-ALIASING FILTER
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Figure 4: An example of an anti-aliasing filter with a cut-off frequency of 1 Hz.

be small compared to the spectrum of the sampling noise, ψN(f) = δ2s/(12fN). Therefore,

ψS(f) � ψN(f)

1

2
A2α2 T =

1

2
A2

(
δs 2

B

2

)2

T � δ2s
12fN

.
(9)

This requires the attenuation, A, to be

A� 1

2B

√
2

3TfN
=

1

2B

√
4

3N
(10)

because TfN = N/2, where N is the number of samples used in each FFT. This depen-
dence on N makes it impossible to specify an attenuation, A, for all situations. For exam-
ple,

√
N is typically 10 to 100, i.e. not of order unity. For B = 16, the numerical factor in

(9), excluding N , equals 1.7 × 10−5. An FFT length of 1024 requires an attenuation small
compared to 5 × 10−7. An anti-aliasing filter that asymptotically goes to zero is also desir-
able for sinusoidal interference. The attenuation of such a filter increases with increasing
frequency and only signals near the Nyquist frequency are problematic.

The two cases discussed in this section are “worst-case” examples, and the numerical val-
ues are quite conservative. For example, if the broad-band noise, or the amplitude of an
unwanted sinusoidal signal, is close to the full-scale range of a measurement system, then
there is no room left for your signal of interest, and you have a very poor instrument.
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5 IMPLICIT BANDWIDTH LIMITATION

5 Implicit bandwidth limitation

Filters that are well suited for anti-aliasing purposes are those that have a small range of
frequency over which their transfer function transitions from 1 to a very small value. The
Butterworth family of filters are often used for anti-aliasing. The inverse of the magnitude-
squared of their transfer function is

|H(f)|−2 = 1 +

(
f

fc

)2n

(11)

where fc is the ‘cut-off’ frequency and n is the order of the filter. The cut-off frequency is
also known as the half-power frequency because the magnitude-squared response is one-
half at that frequency. Even for moderate orders, the attenuation is quite strong for f �
fc (Figure 4, green). There are many other types of filters suitable for anti-aliasing the
data before sampling. For example, the sharpest transition from the pass- to the stop-
band is provided by elliptic filters (Figures 4, blue).

Because the transition from passing to attenuating by a filter spans a finite range of fre-
quency, it is impossible for a measurement system to resolve signals up to the Nyquist
frequency, without aliasing. There is considerable confusion among people taking mea-
surements regarding what is resolved in a signal. For example, it is often (and carelessly)
stated that “if I sample at a rate of fs, I will resolve frequencies up to fs/2.” This is an
unrealistic expectation – the resolved range is significantly smaller than fs/2.

For some instruments, the continuous-domain signal is averaged over the interval between
samples. It is foolish to think that this averaging eliminates aliasing. Such averaging is
identical to data smoothing by convolution with a box-car (sometimes called a uniform or
top-hat) weighting function. This kind of smoothing does reduce the spectrum of a signal
above the sampling rate but it is a very poor filter compared to Butterworth (and most
other) filters. Signal aliasing by this sort of sampling (i.e. the averaging of samples) is in-
variably worse than that achieved by the proper filtering of a signal before sampling.
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6 CHOOSING AN ANTI-ALIASING FILTER

6 Choosing an anti-aliasing filter

A sensible procedure for determining a sampling rate starts with the person who wants
the data (say, the scientist) stating clearly the highest frequency, f0, that must be resolved
so that the data are useful for their intended purpose. Call f0 the “band of interest”. The
extent of this band is a scientific question. Designers, engineers and other suppliers have
no say in its choice beyond telling you how much it will cost. It is then the responsibil-
ity of the suppliers to produce a measurement system that will collect data, throughout
the band of interest, with no more than some X amount of aliasing. Unfortunately, there
is no completely objective criterion for specifying X, because its value dependends on
the characteristics of the signal that you wish to measure and on the resolution of your
measurement system (see sections 3 and 4). RSI usually specifies a maximum aliasing of
X ≈ 1 × 10−5 in the band of interest (f < f0), using a cascade of two 4th-order Butter-
worth filters.

There are at least two design methods; conservative and minimum sampling rate.

6.1 Conservative design

To attain an attenuation such as X = 1 × 10−5, one simply finds the frequency at which
the filter achieves this value. For the 8th-order Butterworth filter of Figure 4, this occurs
at a frequency fX = 4.3f0. The sampling rate is then fs = 2fX = 8.6f0. Aliasing at all
frequencies is then guaranteed to be smaller than X. However, the sampling rate is unnec-
essarily high, wasting storage space and data transmission bandwidth.

Although it is quite possible to design and build 8th-order Butterworth filters, a cascade of
two 4th-order Butterworth filters is more practical because, for lower orders, the filters are
more stable and components are more abundant, and the results are nearly as effective as
those of a single 8th-order filter.

6.2 Minimum sampling rate design

A continuous-domain signal with a frequency fN < f < 2fN is aliased to a frequency
fa = 2fN − f . The frequency folds back around the Nyquist frequency. In general, the
continuous-domain frequency, f , is aliased to the frequency

fa = (−1)n (f − knfN) ,

kn = n+
1− (−1)n

2
, and

n = 0, 1, 2, ....

(12)

where n = 0 represents the non-aliased Nyquist band, n = 1 represents the first aliased
branch, and so on. The effect of aliasing can be illustrated by plotting the response of the
anti-aliasing filter as it appears in the sampled data (Figure 5, red). The first branch (n =
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6 CHOOSING AN ANTI-ALIASING FILTER

1) is the most important one because it has the least amount of attenuation. Aliasing by
way of higher branches requires a large continuous-domain signal in order for it to bias
(or contaminate) the band of interest of 0 to f0. Choosing a sampling rate of fs = 5.7f0
makes the first branch of the alias smaller than 1 × 10−5 in the entire band of interest. For
this cascade of two 4th-order Butterworth filters, the conservative design would have used
a sampling rate of 2 × 4.7 = 9.4 Hz. The rate of the minimum sampling rate design is 1.65
times smaller.

Again, the specifications of section 4 are very conservative. The design used by RSI has
fs = 5.22f0 (Figures 6 and 7), for technical reasons. The band of interest for typical in-
struments is f0≈100 Hz and so the anti-aliasing filters are set to f0 = 98 Hz and the sam-
pling rate is set to fs = 512 s−1.
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Figure 5: The response magnitude of a cascade of two 4th-order Butterworth filters set for a
combined half-power response at f0 = 1 Hz. Blue – response in the continuous domain. Red –
response after sampling at fs = 5.7 Hz. Black – 5.7 Hz.
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6 CHOOSING AN ANTI-ALIASING FILTER

10
-1

10
0

10
1

f  [Hz]

10
-8

10
-6

10
-4

10
-2

10
0

|H
 (
f 

)|

f
0
 = 1 Hz, f

s
 = 5.22 f

0

filter analog domain

filter digital domain

f
s

f
N

branch 1

branch 2

branch 3

Figure 6: Same as Figure 5, but with the RSI implementation of fs = 5.22 Hz. The first three
branches of the aliased signals have been highlighted in cyan, green and magenta.
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Figure 7: Same as Figure 6, but with a linear frequency axis.
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7 IDENTIFYING AN ANTI-ALIASING FILTER

7 Identifying an anti-aliasing filter

You may not know if the system that was used to collect your data contained an anti-
aliasing filter. Fortunately, there will be evidence of an anti-aliasing filter in your spec-
tral estimates, if such a filter was used. The rapid decrease of a signal with increasing fre-
quency (which is a hallmark of a good anti-aliasing filters) is quite unnatural and should
be visible in the spectrum of your signal. That is, you should see a rapid decrease of your
spectrum, with increasing frequency, near the Nyquist frequency (Figure 3). If you do not
see this characteristic, then your data may be aliased. If you also know the full-scale range
and the number of bits, B, of the sampler, then you can use Figure 3 to estimate the qual-
ity of the sampler.

——————–End of Document——————–

12


	Introduction
	An example of signal aliasing
	Data quantization
	The minimum requirements of an anti-aliasing filter
	Frequency-independent noise
	Sinusoidal noise

	Implicit bandwidth limitation
	Choosing an anti-aliasing filter
	Conservative design
	Minimum sampling rate design

	Identifying an anti-aliasing filter

