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ABSTRACT

Quantization noise, the difference between a continuous physical signal and its discrete integer approximation,
is an unavoidable consequence of data sampling. The problem is particularly acute for oceanographic data
because these signals are usually red while the quantization noise is white, and this spectral mismatch limits
our ability to detect short-term (high-frequency) fluctuations. A method of preemphasis and deconvolution is
presented that reduces quantization noise and increases the resolution of short-term fluctuations by a factor of
several hundred without any reduction in the full-scale range of the measurements. Examples are presented of
a 12-bit thermometer with a range of —5° to 35°C and a resolution of 60 u°C, and a 14-bit pressure gauge with

a range of 600 db and a resolution of 1 X 10™* db.

The preemphasis consists of summing a signal and its scaled time derivative before sampling. The enhanced
version of the signal is recovered by convolving the preemphasized signal with a discrete single-pole low-pass
filter with a time constant determined by the scale factor applied to the derivative. Alternatively, the signal and
its derivative can be sampled separately and then combined in the discrete domain before deconvolution.

i. Introduction

Oceanic signals, like most natural processes, are €s-
sentially red; most of their energy is in the lower fre-
quencies. The signal-to-noise ratio of measurements is
usually poor at higher frequencies making it difficult
to resolve small and short-term variations. The main
source of noise in well-designed measurement systems
is the conversion of the signal from the continuous
domain into discrete integer samples, that is, the an-
alog-to-digital (A/D) conversion. The difference be-
tween the continuous signal and its discrete approxi-
mation is called the quantization error and this noise
is approximately white; it has the same energy density
at all frequencies. At high frequencies the quantization
noise dominates the measured signal.

The importance of preemphasizing the higher fre-
quencies of a signal before it is recorded is well estab-
lished for the continuous domain; the audio recording
industry long ago established standards for phono-
graphs and tapes. The playback process includes a de-
convolution of the preemphasis to reproduce the orig-
inal signal. The “recording and play-back process” for
sampled data is similar except that the deconvolution
must be discrete. We will demonstrate a method of
preemphasis that consists of summing a signal and its
scaled time derivative in the continuous domain before
sampling (Fig. 1). Alternatively, one can sample the
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signal and its scaled derivative separately and then sum
these in the discrete domain prior to deconvolution.
An enhanced version of the original signal is retrieved
by a numerically efficient discrete deconvolution. We
applied this technique to two instruments: (1) a 14-bit
pressure measurement system that resolved fluctua-
tions of 107*db (1 db = 10* Pa) while maintaining a
measurement range of 0~600 db, and (ii) a 12-bit ther-
mometer that resolved 20 x°C within its measurement
range of —5° to 35°C. The sampling of a signal and
its scaled derivative is standard practice in microstruc-
ture measurements and is easily implemented in any
system where the sampled signal is an analog voltage—
Sea-Bird Electronics has been producing such instru-
ments for a number of years. Our deconvolution tech-
nique can also be applied directly to other signal en-
hancements such as matching thermometers and con-
ductivity sensors on a CTD (Ochoa 1989) where it
provides better phase fidelity.

The next section describes our technique in contin-
uous time and frequency space. Section 3 introduces
the z and bilinear transform, which provides a realiza-
tion of the required deconvolution in the discrete ( dig-
ital computer) domain. The technique is applied to
observations of pressure in section 4. It is also applied
to thermometry in section 5 where we show that it
provides sufficient resolution to estimate Thorpe scales
in the abyssal oceans, making it possible to estimate
eddy diffusivity without measuring the rate of dissi-
pation of kinetic energy. Section 6 shows how the tech-
nique is applied to CTD data, and the scope and lim-
itations of the technique are discussed in section 7.
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FG. 1. Conceptual diagram for the production of a signal and its
derivative prior to sampling by an A/D converter. Outputs can be
either the signal and its derivative separately (upper and lower tracks)

or a sum of a signal and its derivative (central track). The gain of

the differentiator is ™.

2. The signal and its derivative

Let x,(t) and its scaled first derivative y,(t)
= o~ 'dx,(t)/dt be analog (continuous time domain)
signals that are sampled separately (Fig. 1) to produce
the discrete series

Xq(t) = xa(t) + w(1), (D)
and
1
Ya(t) = yo(1) + v(1) = — axall) + (1), (2)
o dt

evaluated at ¢ = nT,, where T is the time between
samples, » is the integer index of the samples, o~ is
the gain of the differentiator, and w and v are the quan-
tization noise for the signal and its scaled derivative,
respectively. We will consider w and v to be indepen-
dent white noise sequences with bandwidths equal to
the Nyquist frequency F, = Q,,/ 2% = (27T,) " and vari-
ances of ¢2 = A?/12, where A is the bit size of the
A /D converter (Proakis and Manolakis 1988). If the
sampled data are not aliased, then we can consider x,
and y, to be continuous functions for the purposes of
this section. '

" The preemphasized signal ¢(¢) is obtained by sum-
ming the sampled signal x,(¢) with the sampled deriv-
ative ay,(t) such that

e(8) = xa(t) + g— 70

1 dxa(?) a
= [xa(t) + ?Z—CT] + (W + Q. V) , (3)

where the scaling factor Q. (required for dimensional
consistency and denoted the cutoff frequency for rea-
sons that will become clear later) is any real positive
constant. The crucial point 1s that the derivative is cre-
ated before sampling. The Fourier transform of this
preemphasized signal (3) is
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—(1+% ]
C(Q) = (1 +35 )Xa(9)+ WV, (@)

(4 c
where Q is the angular frequency, X,, W, and V are
the Fourier transforms of x,, w, and v, respectively,
and we have used the property of differentiation; that
is, Y,(Q) = iQa™' X,(Q).

The spectrum of the preemphasized signal ¢(¢) is

2 2

3.(9) = (1 + Q—z)cbx(ﬂ) + (1 + 3‘—5)%(9), (5)

Q: Q:
where &, and ®,, = ¢%/Q, are the spectra of x,(¢) and
the quantization noise, respectively. The first term on
the right-hand side (rhs) of (5) is related to the signal
of interest. For frequencies that are small compared to
the cutoff frequency, (2 < Q.), the signal portion of
the spectrum comes predominantly from the sampling
of x;, while for @ > Q, it stems from the sampling of
its scaled derivative y,. The second term on the rhs of
(5) is the noise spectrum and, compared to standard
sampling (no preemphasis), it is larger by a factor of
I+ (a/Q)%

The enhanced version of the original signal, x.(),
is obtained by convolving (3) with a single-pole, low-
pass filter having a transfer function H,(Q) = [1 + (i©/
Q)]7!; that is,

X(Q) = C(Q)Ho(Q)

= X,(Q) + W+3V), (6)

1+ (i2/Q.) ( Q.
where Q. can now be interpreted as the half-power cut-
off frequency of H,. The enhanced signal is the original
analog signal x,(¢) plus low-pass-filtered white noise
with the spectrum
2 2

1 +(a2/Q;) ®,. )
1 +(Q7/Q7)
The noise spectrum for standard sampling is ®,,. Com-
pared to standard sampling, the noise spectrum of the
enhanced signal (7) is larger by a factor of 1 + (a/Q,)?
at low frequencies (Q < Q). Later, we will show that
this factor is of order unity when a and Q. are opti-
mized. Such a modest increase in noise at low fre-
quencies is acceptable because the signal is red. For
high frequencies, @ > €., the noise spectrum is reduced
by a factor of order (Q/a)?, a large reduction placed
where it is needed the most.

The variance of the quantization noise in the en-
hanced signal is

.(2) =

Qy,
oi= [ au0)de, (8)
0
where @, is the Nyquist frequency (rad s™'). For any
choice of the cutoff frequency small compared to the
Nyquist frequency, Q. < £, the variance of the quan-
tization noise in the enhanced signal is
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2 T 2 2y 2
= Q:+ , 9
% =500, ( a’)o 9
while the variance without preemphasis is
AZ
2=0,®,=—. 10
4 Q, 12 (10)

Thus, the overall improvement provided by the
preempbhasis is the ratio of these variances; that is,
o2

o2 20.9,

(2 + o?). (11)
One objective criterion for choosing the cutoff fre-
quency Q.(3)is the reduction of overall variance (11),
which takes its minimum of 7Q./Q, at Q. = a. The
cutoff frequency can also be chosen on the basis of how
it blends a signal with its derivative. The cutoff fre-
quency . should be small compared to the frequency
at which the spectrum of x; becomes dominated by
quantization noise; otherwise, no benefit is realized by
summing the signal with its scaled derivative. Alter-
natively, one could decide upon the highest frequency
of interest and then choose . so that it boosts the
spectrum of the derivative signal above the noise spec-
trum of x; for all frequencies of interest. This last
method is utilized for a pressure signal in section 4.

An alternate strategy is to sum the continuous signals
x,(¢) and a~'y,(¢) into a single signal (Fig. 1). The
enhanced signal is recovered by choosing Q. = «. This
method is utilized for thermometry in section 5. As
there is only one source of quantization noise, the noise
spectrum (7), variance (9), and overall improvement
(11) are reduced by 2.

The implementation of the deconvolution (6) is
trivial in the continuous domain; it requires one resis-
tor, one capacitor, and one operational amplifier. In
the next section we show how this deconvolution is
achieved efficiently with a numerical algorithm in the
discrete domain.

3. The z and bilinear transform

The z transform of a discrete series is

X(2)= 3 x(mz,

n=-—o0

(12)

where z is a complex variable (Proakis and Manolakis
1988). When z is evaluated on the unit circle, z
= exp(irw/Q,), the z transform is the discrete Fourier
transform of a doubly infinite series and provides the
frequency domain representation of operations in the
discrete time domain. Note that because of the interval
of (12), the frequency w of the discrete signal x(n) is
a continuous function over the principle interval £Q,,.
The z transform shares many of the properties of the
Fourier transform (linearity, convolution, etc.) and has
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the useful property that the transform of a delayed series
x(n — n,) is simply

§ x(n—n,)z "=z X(z).

n=—co

(13)

There are a number of methods for mapping transfer
functions of the continuous domain into the discrete
domain and, among these, the bilinear transform

iQ=4F,,(Z— 1)

z+1 (14)

(Proakis and Manolakis 1988) is both simple and ef-
fective.
From (3), the preemphasized discrete series is

il
Qe

and, from (4), we want a filter with the transfer func-
tion

fw\T! _ ITw
H(z)~[1+z(h—6)] , z—exp( Qn) (16)

to approximate the continuous domain deconvolution
(6). Equating the continuous domain frequency Q with
the discrete domain frequency w and using the bilinear
transform ( 14) gives

C(n5=X(n)+ y(n), n=1,2,3---, (15)

Ca(l+z7Y
H(Z)_ 1—‘bz_l 1) (17)
where
-1
a=<4§"+1) , b=1-2a. (18)

The z transform of the enhanced data series, x.(#n), is
then given by

X (z) = H(z)C(z)
X(2) — bX(2)z7' = a[C(z) + C(2)z™"]

and, by exploiting the shift property (13), the time
domain convolution is

X (n) =bx.(n— 1)+ a[c(n) + c(n—1)]
n=1,2,3--+. (19)

The enhanced series is computed recursively using
one past output, x.(n — 1), and the present and one
past input, ¢(#n) and c¢(n — 1), of the preemphasized
signal. The algorithm requires initial unknown values
x.(0) and ¢(0), but the choice of x.(0) = ¢(0) = ¢(1)
is reasonable and virtually eliminates start-up tran-
sients.

Our algorithm is summarized as follows:

(i) sample the signal and its derivative separately,
(ii) chose the cutoff frequency Q,
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(iii) combine these two signals using (15), and
(iv) filter this combination using (19).

Compared to standard sampling, this enhanced signal
costs only three additions and three multiplications per
" data point [one each for step (iii) and another two
each for step (iv)]. If the signal and its derivative are
not sampled separately but are combined in the con-
tinuous domain before sampling, then step (iii) is not
needed but the cutoff frequency is then forced to equal
the inverse gain of the differentiator; that is, @, = a.
The drawback of the bilinear transform is that it
nonlinearly maps frequencies from the continuous do-
main into the discrete domain. Evaluating z on the
unit circle and using ( 14) shows that the mapping is

© —tan™! &
4F, 4F, |

This mapping is linear only for frequencies that are
small compared to the Nyquist frequency and it warps
the higher frequencies by equating infinite frequency
in the continuous domain with the Nyquist frequency
in the discrete domain. At low frequencies, F < F,/
10, the frequencies from the two domains agree within
better than 1% (Antoniou 1979) and they accord within
10%. for F < F, /3. For the low-pass filter of (19), this
warping produces a greater than desired attenuation at
high frequencies—some detail at the shortest time-
scales is smoothed. This is not a serious limitation for
the following two reasons: (i) data are usually over-
sampled to avoid aliasing, and (ii) if spectra are the
objective of the measurements, these can be corrected
using (20) to within a few percent of the Nyquist fre-
quency.

(20)

4. Pressure enhancement

The technique of preemphasis outlined above was
applied to pressure data collected with the towed, mi-
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FIG. 2. Pressure and its derivative reported by the microstructure
instrument HOTDAD during the C-SALT experiment.
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FI1G. 3. A short segment of data shown in Fig. 2.

crostructure instrument HOTDAD (Horizontal Ocean
Data Acquisition Device) during the C-SALT (Carib-
bean-Sheets and Layers Transect) experiment ( Lueck
1987; Fleury and Lueck 1991). Pressure and its deriv-
ative were sampled into two channels at 64 Hz and
quantized into 14-bit integers. The bit resolution of the
pressure record was 0.04 db and insufficient for plotting
hydrographic parameters against depth without some
smoothing of the pressure record.

Variations of the pressure signal over short time-
scales are negligible compared to changes over long
time scales (Fig. 2), while changes of the pressure de-
rivative over large and small timescales have similar
magnitudes; hence, the pressure record is red and may
improve with preemphasis. This difference in character
of the two series at short timescales is even more ap-
parent in an 8-s segment of data (Fig. 3). At short time
scales the pressure record is dominated by quantization
noise while none is evident in the samples of pressure
derivative. The spectra of the two signals reflects this
difference in temporal character (Fig. 4). The spectrum
of pressure flattens above 1 Hz reaching the quanti-
zation noise asymptotically; hence, the pressure record
has useful information only below approximately 0.5
Hz. In contrast, the spectrum of pressure derivative
flattens above 8 Hz. This corner frequency exceeds the
response of the analog electronics and probably the
response of the sensor; thus, useful information for
frequencies above 0.5 Hz is found only in the derivative
record, while both records provide data for frequencies
smaller than 0.5 Hz. Unfortunately, there is a large
and narrow 4-Hz signal in both records due to a prob-
lem with the power supply. This noise limits the range
of interest to only 3.5 Hz (circles in Fig. 4), so we
attempted to improve the pressure measurements up
to this frequency.

The main concern with preemphasis is choosing an
appropriate value for the cutoff frequency Q.. The ratio
a = 1/200 is known from the calibration of the elec-
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FiG. 4. The spectra of pressure and its derivative for the data shown
in Fig. 2. The circles are positioned at 3.5 Hz.

tronics and is reflected by the square root of the ratio
of the spectra at high frequencies (where they are flat).
As shown by (11), the choice of Q. = « gives the lowest
total variance; however, we are not interested in fre-
quencies above 3.5 Hz and satisfactory results will be
obtained for Q. > «. Our criterion is that at 3.5 Hz the
spectrum of the derivative divided by . exceeds the
spectrum of pressure [see (3) and (15)] and this cri-
terion is met by taking Q. < 1/20. We chose Q. = 1/
21, which implies that the enhanced signal will have
a signal-to-noise ratio of unity at 3.5 Hz and a pro-
gressively higher ratio at lower frequencies. The im-
provement provided in the time domain by preem-
phasis (Fig. 5) is considerable—bit noise is not de-
tectable even in a plot spanning 0.2 db. Qur choice of
. gives favorable signal-to-noise ratios for all frequen-
cies smaller than 3.5 Hz and so bit noise should be
negligible for time scales longer than approximately
[(27)3.5 Hz]™! = 0.045 s. Spectra of the original and
enhanced pressure records (Fig. 6) also demonstrate
the benefits of preemphasis—the band of useful signal
has been increased by a factor of approximately 10.
The noise in the enhanced signal is now frequency
dependent (7), making it difficult to give an objective
value for the resolution of this signal. We used two
methods to quantify the improvement provided by
preemphasis—the ratio of the spectra of the original
and enhanced signals at the highest frequency of in-
terest (3.5 Hz), and the reduction in overall noise vari-
ance (11). The ratio of the spectra at 3.5 Hz is 90 900;
hence, A,/ A, = (90 900)'/? ~ 300, where A, = 0.04
db is the bit size of the original pressure record. Thus,
A, = 1.3 X 1073 db is the “bit” resolution of the en-
hanced pressure. The observed improvement of 300 is
close to the theoretical prediction (7) of 470 for o™*
= 200 and Q. = 21, and the additional noise at low
frequencies (2 < Q) is negligible because Q. > « (7).
For the highest frequency of interest, this improvement
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FIG. 5. The original pressure record (lowest curve), the enhanced
pressure using . = 1/21 (upper curve intentionally offset for clarity),
and the original pressure smoothed with a 1-s running mean ( central
curve and also offset).

is equivalent to having used an A/D converter with
an additional 9 bits, that is, a 23-bit converter; however,
this analogy does not apply at lower frequencies, be-
cause the noise spectrum of a converter is white while
the noise spectrum of the enhanced signal (7) is red.
The noise spectrum of the enhanced signal (straight
line in Fig. 6) has been computed on the assumption
that the noise spectrum of the original pressure record
is white and equal to the flat portion of the spectrum
at high frequencies. The ratio of signal + noise-to-noise
takes a minimum of approximately 2 near 3.5 Hz as
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FIG. 6. Spectrum of the pressure data shown in Fig. 2; original
data (upper curve); 1-s smoothed data (middle curve); enhanced
pressure record (lower curve). The nearly straight and diagonal line
is the noise spectrum of the enhanced pressure. The circles are po-
sitioned at 3.5 Hz.
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expected, but it does not asymptotically reach unity at
higher frequencies, which at first may seem surprising.
The spectra were computed with single-precision float-
ing point numbers (24-bit mantissa) and the asymp-
totic behavior of the spectrum of the enhanced signal
merely reflects numerical round-off errors, even though
the filtering was performed with double-precision
arithmetic; thus, this technique taxes the limits of sin-
gle-precision computations. Finally, the overall reduc-
tion in variance ( 11), which includes frequencies well
beyond our interest, is a factor of 2.6 X 103, and the
square root of this, namely, 50, is the overall reduction
in bit size. Thus, the overall reduction in quantization
error is a factor of 50, noise has been reduced by a
factor of 300 at the highest frequency of interest, and
the useful bandwidth has been increased by a factor of
approximately 10.

Sampling and other noise in a signal is more tradi-
tionally reduced by smoothing such as a running mean.
To contrast the technique of preemphasis against sim-
ple smoothing, we applied a running mean filter to the
pressure record that was symmetric about its midpoint.
A running mean filter will reduce high-frequency noise
seen in a signal but, unfortunately, it will also attenuate
low frequencies. Clearly, some smoothing is justified
because signals above 3.5 Hz are beyond our interest
and, because the Nyquist frequency is 32 Hz, only one
in 32/3.5 =~ 9 points is important. For the pressure
data, a running mean filter of 1-s length (64 points)
gives a good balance between the most attenuation of
noise and the least decrease of real (low-frequency)
signal. Although smoothing provides a significant im-
provement (Fig. 5), the bit noise is still clearly visible.
The spectrum of filtered pressure (Fig. 6) is biased by
the noise spectrum and remains above the spectrum
of enhanced pressure for all frequencies above 0.5 Hz.
This limits the useful band of smoothed data to below
0.5 Hz. The strength of preemphasis is that it smooths
the pressure record by adding information from the
derivative record, which has a high signal-to-noise ratio.
Filtering of the pressure record never adds new infor-
mation; instead, it removes information, less being lost
for sharper spectral cutoffs.

5. Temperature enhancement
a. Motivation

A major goal of oceanic fine and microstructure
measurements is the estimation of eddy diffusivity. Di-
rect measurements of shear at dissipation scales using
airfoil probes (Osborn and Crawford 1980) is currently
the most popular technique for estimating the eddy
diffusivity using

Te
K

" = N2 (21)
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(Osborn 1980), where I is the mixing efficiency and
considered to be in the range of 0.05 to 0.2 (Gargett
1984), e is the rate of dissipation of kinetic energy, and
N is the buoyancy frequency. The resolution of ¢ with
present techniques is generally considered to be 1
X 107" W kg™! (Moum and Lueck 1985), although
recent profilers may be capable of 1 X 107! Wkg™!
(J. Toole 1993, personal communication ). Given the
small buoyancy frequency of the abyssal oceans ( Table
1), the more conservative resolution implies that the
eddy diffusivity must exceed 10™> m? s~! at 1000 m
and 1073 m? s™! at 4000 m to be detectable by dissi-
pation measurements. Estimates of eddy diffusivity in
the abyssal oceans are very uncertain and are thought
to lie in the range of 10 °~10~* m? s ! (Garrett 1991).
The dissipation technique may thus be marginal.

An alternative technique for estimating diffusivity
is measuring the Thorpe scale /7, the root-mean-square
(rms) vertical distance of particle displacement due to
turbulence. The Thorpe scale is usually computed by
resorting a vertical temperature profile into a mono-
tonic profile where temperature decreases with in-
creasing depths (Dillon 1982). For meaningful results,
the water column must be free from salinity compen-
sated temperature inversions and the temperature—sa-
linity relationship must be reasonably smooth. Pro-
ducing temperature profiles that resolve the displace-
ment of water over a Thorpe scale, when the mean
temperature gradient is of order 1 m°C m™!, is a major
difficulty with this method. The temperature gradients
in Table 1 have been estimated using

gdp\™!
T,= 15N} 2= ,
(n 3T)

where g is the acceleration of gravity, p is the density,
and the factor of 1.5 accounts for the contribution of
salinity to density in the deep Pacific. If we take T’ as
the difference in the actual temperature from the sorted
monotonic temperature, then

(T = I;T,, (22)

where the angle brackets indicate a suitable depth av-
erage, [-is the Thorpe scale, and T, is the mean vertical
gradient. Because (22) gives the expected rms temper-
ature fluctuation, a conservative estimate of the small-
est fluctuations that must be resolved is about a tenth

" of IT,. The actual resolution required will depend

upon the statistical distribution of 7’ and may be much

TABLE 1. Pacific Ocean abyssal buoyancy frequency
after Munk (1966), and vertical temperature gradients.

D (m) 1000 2000 3000 4000
10°N (rad s7') 2.6 1.5 0.94. 0.49
1037, (°C m™") 37 1l 0.4 0.1
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TABLE 2. Thorpe scales in the abyssal Pacific Ocean and a conservative estimate of the temperature resolution (0.1/777) required to detect
these scales for three hypothetical eddy diffusivities.

K, (m?s™) 1 km 2 km 3 km 4 km
1074 0.44 m/160 u°C 0.58 m/64 u°C 0.73 m/29 u°C 1.0 m/10 x°C
1073 0.14 m/52 p°C 0.18 m/20 u°C 0.23 m/92 p°C 0.32 m/3.2 u°C
107¢ 0.044 m/16 u°C 0.058 m/6.4 u°C 0.073 m/2.9 p°C 0.10 m/1.0 °C

less demanding than 0.1/77, if deep mixing (like its
shallower counterpart) is intermittent.

With strong averaging the Thorpe scale is approxi-
mately the same as the Ozmidov scale /, (Crawford
1986), and using (21) we can take

1/2 1/2
=i
N I'N

(Gargett and Holloway 1984). The Thorpe scale for
depths of 1000-4000 is given for three hypothetical
diffusivities in Table 2 along with a conservative esti-
mate of the temperature resolution required to detect
these Thorpe scales. The required temperature reso-
lution ranges from 1 to 160 u°C. Is the measurement
of Thorpe scales a feasible technique for estimating
diffusivity in the abyssal oceans?

(23)

b. High-resolution temperature -

In June of 1992, vertical profiles of microstructure
shear and temperature were taken around Cobb Sea-
mount (46°45'N, 130°48’'W) with the profiler FLY II
(Dewey et al. 1987). Shear measured by an airfoil probe
and preemphasized temperature detected with an FP-
07 thermistor were sampled at 274 Hz by a 12-bit
A/D convertor. FLY II supports only two fast channels,
so temperature and its derivative were combined in

100+ 1

E. 150t i
N
200+ 1
2501 4
3B 1000 800 600 400 200 0 -200
T + (1/2)dT/dt [bits]
2 A 10 12 14

8
T [deg C]

F1G. 7. The original preemphasized temperature record taken with
FLY II (left curve) expressed as integers and enhanced temperature
in physical units.

the continuous domain before sampling (Fig. 1). The
analog electronics were set so that temperatures from
—5° to 35°C covered the full range of the converter
and the gain of the differentiator was set to o~
= 0.50 s. This forced the choice of @, = a =2.0rad s™!
in the discrete deconvolution to recover the enhanced
temperature signal. The data are dominated by the de-
rivative signal for frequencies larger than about 1/3 Hz.
The chosen temperature range of —5° to 35°C provided
adequate head room for the derivative signal.

A profile of sampled signal (temperature plus its
scaled derivative) expressed in units of the least sig-
nificant bit (or integer counts) is shown in Fig. 7 along
with the deconvolved and enhanced temperature (°C).
The bit resolution of the temperature without preem-
phasis would have been Ay = 40/2'? ~ 9.5 m°C. The
airfoil shear signal (not shown) indicates that the region
between 180 and 225 m was turbulent. At these depths
the mean temperature gradient was less than 1
m°C m™' (Fig. 8) and comparable to gradients in the
abyssal oceans. Clearly, the resolution of the enhanced
temperature surpasses considerably the 9.5-m°C limit
of the original combined signal.

To estimate the improvement provided by preem-
phasis, we have examined a very quiescent section of
data from a deep profile taken more than 10 km from
the seamount (Fig. 9). A wave of about 15 s (approx-

180 T

1901

z{m]
'

210

220
0.0095 deg C
—

6.18 6.19 6.2
T {deg C]

236(‘?16 6.17 6.21

FIG. 8. A 50-m segment of data shown in Fig. 7. This section is
turbulent and has a mean vertical gradient of less than 1 m°C m™'.
The solid horizontal line indicates the size of a bit prior to preem-
phasis.
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FIG. 9. A 15-s section of very quiescent data in integer units;
preemphasized signal (upper curve) and enhanced signal (lower
curve) lowered by two counts for clarity.

imately 4000 samples) is evident in the preemphasized
signal but all shorter term data are masked by bit noise.
We have expressed the enhanced signal in terms of
original bit size (9.5 m°C) to facilitate comparisons.
The amplitude of the short-term fluctuations is about
0.01 bit. The spectrum of the preemphasized and en-
hanced signals are shown in Fig. 10 along with the
noise spectrum for an ideal A/D converter and the
noise spectrum after ideal low-pass filtering. The
preemphasized signal is very close to the theoretical
noise level. Comparing the enhanced spectrum against
the noise spectrum of the preemphasized signal shows
that no signal would have been detected above 1 Hz
without preemphasis. The highest frequency to which
the data can be interpreted as temperature is about 50
Hz. Above 50 Hz there is considerable smoothing by
the analog electronics, and the thermistor attenuates
signals above 20 Hz. From the ratio of the noise spectra
at 50 Hz we estimate a hypothetical bit size of 0.006
or an improvement of about 160 for our choice of dif-
ferentiator gain. The overall variance is reduced by 162
and, if we ignore data above 50 Hz, the variance is
diminished by 10%. The enhanced signal drops below
the theoretical noise above 100 Hz because of frequency
warping (section 3).

Preemphasis has raised the resolution from 9.5 m°C
to 60 u°C at 50 Hz. The choice of a 12-bit A/D con-
verter was not under the control of the authors. If we
extrapolate the resolution obtained with a 12-bit con-
verter to a 16-bit unit, then 4-u.°C resolution is achiev-
able with preemphasis and Thorpe scales may be mea-
surable in the abyssal oceans. Johnson noise is about
2 u°C (Gregg et al. 1978).

The local displacement of the water parcels was
greatest in the region of 180-225 m, and the rms
Thorpe scale was clearly resolved, being about 7 m in
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FIG. 10. Spectra of data in Fig. 9; preemphasized signal (upper
solid curve) and its noise level (upper dashed line); enhanced signal
(lower solid curve) and its noise spectrum (sloping dashed curve).

this region (Fig. 11). Although the mean gradients are
similar to abyssal gradients, the Thorpe scale for mixing
around Cobb seamount is about a factor of 10 larger
than expected for abyssal conditions—the diffusivity
implied by a 7-m Thorpe scale is 1072 m?s™!. The
successful resolution of Thorpe scales under such strong
mixing does not by itself guarantee equally successful
results in the abyssal oceans but it provides grounds
for optimism.

It is worth noting that the technique of combining
a signal with its scaled derivative is used in the SBE 7-
02 microstructure conductivity probe and the SBE 8-
02 microstructure thermometer manufactured by Sea-
Bird Electronics Incorporated. For these systems, o ™!

501 b
100 7

E1s0p 1
N

2001 7

250 1

300 L *
10° 3 o
rms d [m]

FIG. 11. Profile of rms displacement ( Thorpe scale) smoothed
with a 5-m running average.
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is set to approximately 5/#. The deconvolution dis-
cussed here may be helpful to users of these instru-
ments.

6. CTD data processing

" Our technique is largely a method of discrete signal
processing that can also be applied to other types of
data processing problems such as matching signals from
thermometers and conductivity sensors on CTDs. Bray
(1987) and Ochoa (1989) used two methods of de-
creasing salinity spiking that are amenable to the tech-
nique presented here; both attempted to reduce or re-
move the relative lag of a platinum resistance ther-
mometer (PRT) with respect to a conductivity probe.
We will bypass all discussion of the appropriateness of
the various models of sensor response that are used to
match CTD sensors and, instead, merely demonstrate
how these continuous domain models can be imple-
mented in the discrete domain.

In Bray (1987), temperature signals from a PRT
and a fast-response thermistor (FRT) on a Neil Brown
Mark i1l CTD were combined to produce a tempera-
ture record with the long-term precision of the PRT
and the short-term resolution of the FRT that, by itself,
exhibits considerable drift on long time scales. Using
a running mean to filter the data, she produced an
enhanced temperature record by adding the high-
passed FRT signal to the low-passed PRT signal; that
is,

T (t) = {Tert()) + [Terr(?) — {Terr(2))], (24)

where the angle brackets indicate a running mean. The
best results were obtained for a running mean of length
7 = 60 s covering approximately 2000 data samples.
As indicated in section 4, running means provide in-
efficient smoothing with large spectral side lobes. The
main advantage of a running mean is that it can be
made numerically efficient by taking advantage of its
equal weighting. A well-written algorithm requires only
two additions and one multiplication per data point;
however, for nonuniform weighting, the number of
additions and multiplications is approximately the
width of the smoothing window.

If, instead of a running mean, we choose a Butter-
worth low-pass filter, then (24) is equivalent to

T () = TF G99 Tert(92)
/9,
TG/ Terr(2), (25)
which reduces to
TUD) = —— | Toer (@) + 2 T (@)
e( ) - 1 + (IQ/Q(-) [ PRT QC FRT .
(26)
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Equation (26) is similar to the technique of preem-
phasis. Filtering the FRT and PRT signals as in (24)
is equivalent to combining the temperature of the PRT
with the temperature derivative of the FRT and then
low-pass filtering this combination to produce an en-
hanced signal. Using the bilinear transformation, (26)
becomes

Te(n) = bTe(n — 1) + a[ Terr(n) + Tprr(n — 1)]
+ ¢[ Tert(n) — Terr(n — 1)1, (27)

where g and b are given in (18) and ¢ = 1 — a.
A Butterworth filter with a cutoff frequency of Q.
= 7(1.17)7! gives a smoothing similar to a running
average of width 7. The enhancement algorithm of (27)
requires four additions and three multiplications per
data point or, through the simple relationship between
a, b, and c, seven additions and one multiplication.
Thus, (27) is less efficient than a running mean but its
initial transient response can be minimized through a
proper choice of initial values while a running average
has a transient response lasting 7/2 and, being causal,
(27) can be implemented in real time.

Ochoa (1989) took a somewhat different approach
to reducing salinity spiking caused by the mismatch in
response times of Neil Brown CTD sensors. His method
is meant for the Smart CTD, which does not carry an
FRT and, thus, Bray’s technique is not applicable. The
phase lag of the PRT signal was reduced by filtering
its signal backwards using a digital filter with a transfer
function similar to that of the PRT. The transfer func-
tion of the PRT was taken to be characterized by

dTpgry
R + = I s
T It TprT i}

where T is the actual temperature. In fact, (28) is
another way of expressing the first-order, low-pass,
Butterworth filter, where Tpgry 1S its output, T its input,
and Q.= 7!, The discrete approximation of (28 ) used
by Ochoa was

Tert(n) = (1 = B)To(n) + BTerr(n — 1), (29)

where 8 = exp(—T7;/7) and T is the time between
samples. At first glance, (29) appears to be a reasonable
approximation of (28) and may have first been used
for CTD data processing by Fofonoff et al. (1974);
however, (29) is flawed in that its asymptotic phase at
high frequencies tends to 0 while the phase of (28)
tends to —/2; that is, (29) is one-half sample time
out of step with (28). This mismatch is easily seen by
comparing the Fourier transform of (28) against the z
transform of (29) evaluated on the unit circle. Phase
is much more important than amplitude when match-
ing signals, and this asymptotic phase mismatch may
be responsible for some of the difficulties reported by
Ochoa. For example, he obtained favorable results for
a Mark III CTD with T < 7 or equivalently 2, > Q,,

(28)
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while the reduction in spikes was less satisfactory for
the Smart CTD with T, =~ 7. An alternative discrete
approximation to (28) with good phase fidelity is ob-
tained by taking the Fourier transform of (28), apply-
ing the bilinear transform (14), and then using the
shift property (13) to produce

Tert(n) =a[To + To(n — 1)] + bTpry(n — 1),
(30)

where, as in (18),

1 1
" 14+4Fs 1+ Qr/Ty)’

The main difference-between (30) and (29) is the ad-
ditional term To(n — 1), which centers the input T
midway between # and # — 1 and, thereby, imparts an
asymptotic phase shift of —w/2 at the Nyquist fre-
quency. The phases of (28), (29), and (30) are com-
pared in Fig. 12 for 7 = 0.3 s and the two values of T
examined by Ochoa. Since only frequencies up to ap-
proximately 1 Hz are important, we see that in the first
case (Fig. 12a), having T = 0.04 s, that the phase error
of Ochoa’s deconvolution (29) is less than 10°; how-
ever, for the second case (Fig. 12b), having T, = 0.2
s, the phase error of (29) reaches 50° at 1 Hz. For both
cases, the phase error of the bilinear approximation
(30) is small at all frequencies.

b=1-2a.

a

(31)

7. Discussion and conclusions
a. Discussion

Although preemphasis can dramatically increase the
resolution of a signal, its application should be consid-
ered carefully. It is very appropriate for signals that are
red because it whitens the signal before quantization.
Signals that are already relatively white may be better

Ts=0.04s , Fn=12.5Hz , tau=0.3s

0 — T
-10 a i
20 7 |
30} 29 ]
=
g 40t : 1
H
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a
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50 28) 1
[ (30) TR
o7 0T o3 Ui 05 6 o7 o 5
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f/Fn
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served by simple smoothing. The technique requires
some a priori information about the expected range of
a signal and the magnitude of its maximum rate of
change so that the gain of the differentiator, ™!, can
be chosen to cover as fully as possible the span of the
A /D converter. The derivative signal will be saturated
and, hence, useless if the differentiator gain is too large.
On the other hand, the derivative signal will have too
little boost at higher frequency and remain close to the
quantization noise if the gain is set too low. The sensors
themselves must be fast enough that the higher-fre-
quency information contains useful data. Profiling in-
struments are ideal candidates for preemphasis; how-
ever, “high frequency” is a relative term. The technique
is also useful for moored and stationary sensors pro-
vided that the signal is red.

The cutoff frequency Q. must also be chosen with
some care. If the signal is added to its scaled derivative -
in the continuous domain prior to sampling, then Q.
must equal «; there is no other choice! The choice of
cutoff frequency is not constrained if summing occurs
in the discrete domain after sampling. However, poor
results will follow for cutoff frequencies that are much
smaller and much larger than «. If Q. is very large, the
derivative samples contribute very little to the preem-
phasized signal [see Eq. (3)], and the benefits are small.
If the cutoff frequency is very small, the preemphasized
signal is strongly dominated by the derivative samples,
which are unreliable at very low frequencies. The spec-
trum of the derivative signal, being proportional to the
signal spectrum times frequency squared, must ulti-
mately fall below the quantization noise spectrum as
Q — 0; thus, low-frequency information is compro-
mised. The enhanced signal will also suffer from nu-
merical instability when Q. is excessively small. From
(17) and (18) it 1s clear that the deconvolution coef-
ficient b approaches unity as Q. — 0 and b eventually

Ts=0.25 , Fn=2.5Hz , tau=0.3s
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FiG. 12. Phase versus frequency normalized by the Nyquist frequency for the first-order linear thermometer of Eq. (28), the discrete
approximation of Ochoa Eq. (29), and the bilinear approximation Eq. (30) for two cases considered by Ochoa (1989); (a) T, = 0.04 s
corresponding to a Mark Il CTD; (b) 7, = 0.2 s corresponding to a Smart CTD.
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becomes indistinguishable from exactly one for a com-
puter with finite word length.

Preemphasis does not increase the accuracy of
sampled measurements; it increases the high-fre-
quency or short-term resolution of a signal by de-
creasing the quantization error. Accuracy is a matter
of calibration and stability. The International Tem-
perature Scale of 1990 (Bedford 1990, chapter 2) is
defined only to 0.001°C. Small temperature differ-
ences, hence relative temperature, can be interpo-
lated beyond this limit of 0.001°C. The maximum
time scale over which the extra resolution is mean-
ingful will depend on the instrumentation and how
it is used. For example, most thermometers are sen-
sitive to pressure and some portion of the enhanced
signal may reflect variations of pressure rather than
temperature or, through self-heating, reflect varia-
tions in flow past the sensor. Likewise, the electronics
supporting a sensor may induce variations of the
measured signal due to temporal drifts and environ-
mental changes around the circuitry. Noise and other
spurious signals in the continuous domain (i.e., be-
fore sampling) are treated as real signals by the tech-
nique of preemphasis. The prudent user must eval-
uate the significance of these and other effects. As a
rule, the longer the time scale over which minute but
real variations of a signal are to be detected, the more
significant will be the contribution of secondary ef-
fects.

A significant practical consideration is signal offset.
For Q. small compared to unity, the derivative signal
is amplified considerably (3 and 15) and small offsets
produced by analog electronics may add a significant
bias to the enhanced signal. Bias in the derivative
samples can be minimized by (i) defining the mean
derivative to be the difference between the last and
first sample of the (undifferentiated) signal divided
by the time between these samples and then (ii) ad-
justing the derivative record by a constant to make
its mean equal to the above-defined mean. Due to
bias, potential numerical instability, and excessive
low-frequency noise, we were reluctant to make €.
smaller than necessary in the preemphasis of the
pressure record (section 4).

A signal compression of almost a factor of 2 is ob-
tained by summing the signal with its scaled derivative
before sampling. For example, if an m-bit system has
been set up so that the signal and its derivative each
fully span the range of an A/D converter, then a sum
of these signals requires a converter with m + 1 bits.
The saving is (m + 1)/2m. Summing the signal and
its derivative before sampling also appears to reduce
the quantization noise of the enhanced signal by a fac-
tor of 2 compared to sampling the signal and its deriv-
ative separately. Eowever, the amplitude of the signal
and its derivative must be reduced by a factor of 2 for
the sum to fit into the range of the converter. The vari-
ance of the enhanced signal is then smaller by a factor
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of 4 and the final ratio of noise-to-signal variance is
larger by a factor of 2; hence, there is no real improve-
ment in reducing quantization noise by summing the
signal and its derivative before sampling rather than
summing after sampling.

b. Conclusions

It is possible to significantly reduce quantization
noise by preemphasizing data before sampling or, al-
ternatively, by sampling both the signal and its deriv-
ative. With both methods, the preemphasized data is
a linear combination of a signal and its time derivative.
A numerically efficient deconvolution of the data re-
turns the original signal plus low-pass-filtered white
noise. Examples were provided for pressure and tem-
perature measurements. Compared to conventional
sampling, signal resolution was improved by a factor
of 300 and 160 at the highest frequency of interest for
pressure and temperature, respectively. The overall
noise variance was reduced by a factor of 2600 and
256 for pressure and temperature, respectively. The
method of preemphasis is easily implemented in all
measurement systems where the signal is an analog
voltage. The method may permit measurements, such
as Thorpe scales in the abyssal oceans, that hitherto
were considered impractical.

Acknowledgments. We received very helpful com-
ments from L. Maas, C. Garrett, J. Toole, and the ref-
erees. We are particularly indebted to W. Crawford for
the use of FLY-II. This work was supported by the
Office of Naval Research under Grant N00014-89-
J1607 and by a grant from NSERC/DFO. TDM was
partially supported by an Atlantic Accord Career De-
velopment Award.

REFERENCES

Antoniou, A., 1979: Digital Filters: Analysis and Design. McGraw-
Hill, 524 pp.

Bedford, R. E., 1990: Physical principles. Thermal Sensors, W. Gopel,
J. Hesse and J. N. Zemel, Eds., VCH, 412 pp.

Bray, N. A., 1987: Salinity calculation techniques for separately dig-
itized fast response and platinum resistance CTD temperature
sensors. Deep-Sea Res., 34, 627-632.

Crawford, W. R., 1986: A comparison of length scales and decay
times of turbulence in stably stratified flows. J. Phys. Oceanogr.,
16, 1847-1854.

Dewey, R. K., W. R. Crawford, A. E. Gargett, and N. S. Oakey, 1987:
A microstructure instrument for profiling oceanic turbulence in
coastal bottom boundary layers. J. Atmos. Oceanic Technol., 4,
288-297.

Dillon, T. M., 1982: Vertical overturns: A comparison of Thorpe
and Ozmidov length scales. J. Geophys. Res., 87, 9601-9613.

Fleury, M., and R. G. Lueck, 1991: Fluxes across a thermohaline
interface. Deep-Sea Res., 38, 745-769.

Fofonoff, N. P., S. P. Hayes, and R. C. Millard Jr., 1974: W H.O.1/
Brown CTD microprofiler: Methods of calibration and data
handling. W.H.O.I. Tech. Rep. WHOI-74-89, 64 pp.

Gargett, A. E., 1984: Vertical eddy diffusivities in ocean interior. J.
Mar. Res., 42, 359-393.

——, and G. Holloway, 1984: Dissipation and diffusion by internal
wave breaking. J. Mar. Res., 42, 359-393.



836

Garrett, C. J. R., 1991: Marginal mixing theories. Atmos.-Ocean, 29,
313-339.

Gregg, M. C., T. Meagher, A. Pederson, and E. Aagaard, 1978: Low
noise temperature microstructure measurements with therm-
istors. Deep-Sea Res., 25, 843-856.

Lueck, R. G., 1987: Microstructure measurements in a thermohaline
staircase. Deep-Sea Res., 10, 1677-1688.

Moum, J. N, and R. G. Lueck, 1985: Causes and implication of
noise in oceanic dissipation measurements. Deep-Sea Res., 32,
379-390.

Munk, W. H., 1966: Abyssal recipes. Deep-Sea Res., 13, 707-
730. :

JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY

VOLUME 11

Ochoa, J., 1989: A practical determination of CTD resistance ther-
mometer response time, and its use to correct salinity bias and
spikes. Deep-Sea Res., 36, 139-148.

Osborn, T. R., 1980: Estimation of the local rate of diffusion
from dissipation measurements. J. Phys. Oceanogr., 4,
109-115.

———, and W. R. Crawford, 1980: An airfoil probe for measuring
turbulent velocity fluctuation in water. Air-Sea Interaction: In-
struments and Methods, F. Dobson, L. Hase, and R. Davis,
Eds., Plenum.

Proakis, J. G., and D. G. Manolakis, 1988: Introduction to Digital
Processing. MacMillan Pub., 944 pp.





