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ABSTRACT

The small-scale structure of turbulence subjected to strong stratification is analyzed with rapid distortion
theory to evaluate the performance of formulas for predicting dissipation of turbulent kinetic energy and
dissipation of scalar variance. The approach is restricted to weak turbulence in strong stratification, like that
in the thermocline or the abyssal ocean. Flows with and without mean shear are considered. For unsheared
turbulence, the small scales are axisymmetric about the vertical axis, as others have previously assumed. The
calculations here complement and extend previous work because they can be used to compute errors in
dissipation estimates, develop simpler formulas, and examine the effects of shear and other parameters. For
example, effects of the initial conditions can be significant. For sheared turbulence, the small-scale velocity
and buoyancy fields are neither isotropic nor axisymmetric about the vertical axis. Although dissipation
formulas based on isotropy work relatively well for unsheared turbulence, some can be incorrect by more
than a factor of 3 for sheared turbulence. However, if the mean flow direction can be identified, then a
simple and useful dissipation formula can be proposed.

1. Introduction

Vertical mixing is a key component of the global
ocean heat and salinity budgets. Direct measurement of
vertical mixing is difficult because instrument motions
and internal waves occur at the same scales that accom-
plish the turbulent mixing. Therefore, mixing is fre-
quently estimated by measuring the dissipative scales of
the turbulence and inferring eddy diffusivities from
simplified budgets of either temperature variance or
turbulent kinetic energy (Osborn and Cox 1972; Os-
born 1980). Although the indirect methods avoid prob-
lems with measuring the large scales of the turbulence,
they require more information than can be easily mea-
sured. For example, if ui and T are the fluctuating ve-
locity and temperature, then the dissipation of turbu-
lent kinetic energy and dissipation of temperature vari-
ance are defined as

� � �ui,j�ui,j � uj,i� and �1a�

�T � 2DT , j
2 , �1b�

where � is the kinematic viscosity and D is the molecu-
lar diffusivity of temperature.1 Thus, dissipation calcu-
lations require nine velocity gradients for � and three
temperature gradients for �T. While some researchers
have measured two of the gradients simultaneously
(e.g., Yamazaki et al. 1990), typically only one is avail-
able. We use an analytical method to evaluate dissipa-
tion formulas and suggest improvements.

To estimate dissipation from a limited number of
measured gradients, oceanographers often assume the
small scales of the turbulence are isotropic. The rea-
soning is that if the Reynolds number is large enough,
the large, energy-containing scales will be much larger
than the small, dissipative scales, and the structure of
the small scales will not depend strongly on the forcing
(e.g., Tennekes and Lumley 1989, p. 65). In isotropic
turbulence, all mean-squared scalar gradients are equal
and simple relations between the mean-squared veloc-
ity gradients also exist. A mean-squared gradient in the
direction of a velocity component is half as large as one
in a direction normal to a velocity component; for ex-
ample,

u1,1
2 �

1
2

u1,3
2 . �2�
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1 Standard index notation is used here and throughout the pa-
per. For example, ui, j � �ui/�xj,T

2
, j � (�T/�xj)

2, and repeated indices
indicate summation.
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The simple structure of isotropic turbulence allows the
dissipations to be estimated from one gradient each.
The dissipation of turbulent kinetic energy can be esti-
mated with

� � 15�u1,1
2 , �3�

and the dissipation of temperature variance can be es-
timated with

�T � 6DT ,3
2 . �4�

The use of isotropy is appealing, but several studies
suggest that isotropy may not hold for the velocity field
in a stratified fluid. Gargett et al. (1984) found that
their observations of velocity spectra in a tidal channel
could be classified by �/�N2 and they concluded that
small-scale isotropy occurs for �/�N2 	 200. Deviations
from isotropic behavior occur as �/�N2 decreases. For
example, as Van Atta (1991) noted, spectra of �u3/�x1

and �u2/�x1 measured in the ocean thermocline (from
Yamazaki 1990) agree over all but the largest wave-
numbers when �/�N2 � 361, as isotropy requires. How-
ever, in measurements with �/�N2 � 18 and 64 the spec-
tra of �u3/�x1 fall below those of �u2/�x1 over a large
range of wavenumber. Similar results are observed in
laboratory experiments and numerical simulations
(Van Atta 1991). In stratified wind tunnel experiments
with and without mean shear the ratio u2

3,1/u2
1,1 quickly

decreases below 2, the value in isotropic turbulence
(Thoroddsen and Van Atta 1992; Piccirillo and Van
Atta 1997). Numerical simulations of sheared, strati-
fied, homogeneous turbulence with 50 
 �/�N2 
 650
show that � estimated with isotropy can be inaccurate
by a factor of 2–4 (Itsweire et al. 1993). Smyth and
Moum (2000) used direct numerical simulations of
turbulence due to Kelvin–Helmholtz instability to
conclude that isotropic approximations work well for
�/�N2 	 100 but perform worse for smaller values.

Strong stratification and shear can disrupt the isot-
ropy of the scalar field also. Field observations of scalar
microstructure in the upper North Atlantic show an-
isotropy when the Cox number C � KT /D is less than
104 (Sherman and Davis 1995). As with the velocity
field, laboratory experiments on unsheared, stratified
turbulence show that anisotropy develops soon after
the turbulence is generated (Thoroddsen and Van Atta
1992). In fact, Sreenivasan (1991) concluded that isot-
ropy of the small-scale scalar field in a shear flow will
occur only for extreme Reynolds numbers. The simu-
lations of Itsweire et al. (1993) suggest that �T com-
puted assuming isotropy and using the streamwise gra-
dient would be underestimated by a factor of 4. Smyth
and Moum (2000) obtained similar results, though they
stated that isotropic approximations of �T should be
accurate to O(10%) for C 	 100.

The results from the studies reviewed above have
been used to improve dissipation formulas by adjusting
the coefficients in the isotropy relations. Yamazaki and

Osborn (1990) used a different approach: They recog-
nized that when stratification is important enough to
affect the small scales, it would differentiate the vertical
direction from the others. Thus, they derived dissipa-
tion formulas assuming that the small scales will be
axisymmetric about the vertical. In general, the axisym-
metric formulas require four mean-squared velocity
gradients, but, using results of previous field experi-
ments, Yamazaki and Osborn (1990) developed formu-
las for upper and lower bounds on the dissipation that
require only two gradients. [Their paper contains an
error that was corrected in Yamazaki and Osborn
(1993).] Shear due to flow in a horizontal direction
breaks axisymmetry around the vertical. Smyth and
Moum (2000) found that for their flow dissipation for-
mulas based on axisymmetry around the flow direction
perform about as well as the isotropic formulas.

To estimate errors in dissipation formulas in strongly
stratified flows, we examine the small-scale structure of
the velocity and scalar fields using rapid distortion
theory (RDT). As discussed in section 2, because the
theory requires the eddy time scales to be large in com-
parison with the time scale of the mean flow, the results
are restricted to weak turbulence in strong stratification
such as that found in the thermocline, background ar-
eas, and parts of the Equatorial Undercurrent. The
theory also complements previous experiments and
simulations by allowing a wider parameter range to be
explored. For unsheared turbulence (section 3), RDT
predicts the small scales to be axisymmetric about the
vertical, as Yamazaki and Osborn (1990) assumed. It
allows their work to be extended by providing dissipa-
tion estimates from a single measured gradient. When
shear is added (section 4), axisymmetry no longer
holds, but RDT offers guidance for estimating dissipa-
tion. The main results and recommendations are sum-
marized in section 5.

2. Rapid distortion theory

Several researchers have used RDT or similar analy-
ses to study homogeneous turbulence in a stratified
fluid. For example, Deissler (1962) computed energy
spectra for weak turbulence subjected to stratification,
and Pearson and Linden (1983) analyzed the final pe-
riod of decay of stratified turbulence with a linearized
theory. Hanazaki and Hunt (1996) found that RDT can
explain some of the phenomena, such as upgradient
fluxes, observed in unsheared, stratified grid turbulence
experiments, while Hunt et al. (1988) used RDT to pro-
pose new models of sheared, stratified turbulence.

a. Assumptions

Rapid distortion theory is based on an approximation
of the equations for the fluctuating velocities ui, pres-
sure p, and buoyancy b � �g�T, where � is the thermal
expansion coefficient. For homogeneous turbulence, in
which gradients of averaged turbulence quantities are
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zero, the equations for fluctuating quantities in a fluid
with a vertical temperature gradient are

�ui

�xi
� 0, �5a�

�ui

�t
� Uj

�ui

�xj
� �uj

�Ui

�xj
�

�

�xj
�uiuj� �

1
�0

�p

�xi
� b�i3

� �
�2ui

�xj
2 , and �5b�

�b

�t
� Uj

�b

�xj
� u3N2 �

�

�xj
�buj� � D

�2b

�xj
2 , �5c�

where Ui is the mean velocity, N � (g�dT/dx3)1/2 is the
buoyancy frequency, and gravity acts in the negative x3

direction.
The momentum and buoyancy equations, (5b) and

(5c), can be linearized under certain conditions. RDT
applies when the time scale of the mean flow is small
compared to the time scales of the eddies. In this case
the mean flow distorts the eddies before they can in-
teract, and thus nonlinear interactions are relatively un-
important (Hunt 1978; Townsend 1980). For a stratified
flow in which the mean flow time scale is the gravita-
tional adjustment time N�1, Hanazaki and Hunt (1996)
found that RDT applies after one buoyancy period to
eddies of size  and larger if the Froude number is
small:

Fr� �
u�

N�
� 1, �6�

where u is the velocity associated with eddies of size .
For RDT to apply to the dissipative scales, a Froude

number based on the velocity and length scales of the
small eddies must be small. Model spectra developed
by Tennekes and Lumley (1989, their section 8.4)
can be used to show that about 90% of the dissipation
is obtained by integrating dissipation spectra up to
k(�3/�)1/4 � 1, or a length scale  � 2�(�3/�)1/4. The
velocity at scale  can be estimated as u � (�)1/3

(Landau and Lifshitz 1987). Substituting these results
into (6) yields

�

�N2 � O�10�. �7�

Reviews by Moum (1997) and Gregg (1998) show
that �/�N2 will often be much higher in relatively ener-
getic flows such as mixed layers, tidal channels, and
hotspots near topographic features. However, low val-
ues of �/�N2 can occur in the thermocline (Gregg 1989;
Yamazaki 1990), parts of the Equatorial Undercurrent
(Gregg 1998), and “background areas,” or areas in
which breaking internal waves drive the mixing without
effects from topography or mesoscale features (Gregg
1998). In addition to providing dissipation formulas for
areas with weak turbulence, RDT also allows uncer-
tainty to be estimated in the extreme case of strong

stratification. In particular, if the isotropic formulas
perform adequately for the strongly stratified, weak
turbulence considered here, they should be adequate
for most oceanic situations.

b. Calculations

We treat homogeneous turbulence in a fluid sub-
jected to linear density and velocity profiles, or con-
stant buoyancy frequency N and shear S � dU1/dx3. If
the assumptions in the previous subsection apply, then
the nonlinear terms in (5) can be neglected. The solu-
tion of the resulting system by Fourier methods is fa-
cilitated by transforming to a coordinate system that
follows the mean flow (Rogallo 1981):

�1 � x1 � Stx3, �2 � x2, and �3 � x3. �8�

We introduce a Fourier representation of the depen-
dent variables; for example,

uj��, t� � �
	

ûj�	, t�e�i	j�j, �9�

where �j is the wavenumber in the j direction, i � ��1,
and the carets denote Fourier amplitudes. Then, when
the pressure is eliminated with the continuity equation,
the resulting system is

dû1

dt
� S�2	1

2

K2 � 1�û3 �
	1K3

K2 b̂ � �K2û1, �10a�

dû2

dt
� 2S

	1	2

K2 û3 �
	2K3

K2 b̂ � �K2û2, �10b�

dû3

dt
� 2S

	1K3

K2 û3 � �K3
2

K2 � 1�b̂ � �K2û3, �10c�

and

db̂

dt
� N2û3 � DK2b̂, �10d�

where b̂ is the Fourier amplitude of the buoyancy fluc-
tuation and

K3 � 	3 � 	1St, �11a�

K2 � 	2 � 2	1	3St � 	1
2�St�2, and �11b�

	2 � 	m	m. �11c�

To complete the solution, one can solve the system
(10) and compute the spectra Eij with a discrete Fourier
transform of the two-point correlations:

Eij�	, t� � lim
V→


V

�2��3� ûi ûj
†�, �12�

where the dagger superscript denotes the complex con-
jugate and the angle brackets denote an ensemble av-
erage. Then, turbulence statistics, such as mean-
squared velocity gradients, can be computed by inte-
grating the spectra over wavenumber space:

u�,
2 � �

	

k
2E���	, t� d3	, �13�

where Greek indices are not summed.
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Analytical expressions for the Fourier amplitudes
can be found for the cases with no shear (Hunt et al.
1988; Hanazaki and Hunt 1996), no stratification (e.g.,
Townsend 1980), and nonzero shear and stratification
(Hanazaki and Hunt 2004). One can also derive equa-
tions for the spectra and solve them numerically. Be-
cause the analytical solutions involve special functions
or integrals that must be evaluated numerically, the
latter approach is used here. For example, the equation
for the cospectrum of vertical velocity and buoyancy is

dEb3

dt
� 2S

	1K3

K2 Eb3 � �K3
2

K2 � 1�Ebb � N2E33

� �� � D�K2Eb3. �14�

We consider several initial conditions for the calcu-
lations. For most of the calculations we use isotropic
spectra:

Eij�	, 0� �
E�	�

4�	2 ��ij �
	i	j

	2 �. �15�

This spectrum requires that only the energy spectrum
function E(�) be specified. For this we use an energy
spectrum function similar to that used by Townsend
(1980, p. 85):

E�	� �
q0

2

3�2�
	4L5e��	L�2�2, �16�

where L is related to the longitudinal integral scale and
q2

0/2 � ��
0 E(�) d� is the initial turbulent kinetic energy.

If the RDT equations are made nondimensional by
scaling lengths with L and time with N�1, molecular
viscosity and diffusivity can be parameterized by the
Grashof number Gr � NL2/� and Schmidt number Sc �
�/D. The Grashof number, which arises in the ratio of
the second and third terms on the right side of Eq.
(10c), measures the relative importance of buoyancy
and viscous forces. Data in Yamazaki (1990) can be
used to find that Gr ranges from 102 to 103 in the ther-
mocline and fjords. The Schmidt number for heated
water is 7, and the Schmidt number for saltwater is 700.

To assess the importance of the initial turbulence
structure we also use axisymmetric initial conditions
(Maxey 1982):

Eij�	, 0� � B1�	���ij �
	i	j

	2 � � B2�	�

� �eiej �
�	mem�2

	2 �ij �
	mem�ei	j � ej	i�

	2 �,

�17�

where ei is a unit vector in the direction of the axis of
symmetry. In particular, we consider two cases: one in
which the axis of symmetry is vertical and one in which
the axis of symmetry is normal to both the vertical and

mean flow directions; that is, ei � �i3 and ei � �i2, re-
spectively. In general one must specify both functions
B1(�) and B2(�), but if the fluid is inviscid or if � � D,
then integrals of these two functions may be specified
(Maxey 1982). For the calculation of mean-squared
strain rates, we specify

Bn �
8�

15�0
2 �

0




	4Bn�	� d	, �18�

where n � 1 or 2 and �2
0 is the initial value of u2

3,3. Using
a method similar to Maxey’s, one can express B1 and B2

in terms of the initial value of �1 � u2
3,3/u2

2,1. When the
axis of symmetry is vertical,

B1 �
1
3 � 2

1
� 1� and �19a�

B2 �
2
3 �2 �

1
1
�, �19b�

and when the axis of symmetry is transverse,

B1 � 2 �
1

21
and �20a�

B2 �
1
1

� 2. �20b�

If the turbulence is isotropic initially �1 � 1/2, then B1

� 1, B2 � 0, and the spectra in (17) reduce to the
isotropic spectra (15).

Initial buoyancy fluctuations can be included rela-
tively easily if the spectrum function of the buoyancy
field and the energy spectrum function have the same
wavenumber dependence. In this case, only the initial
ratio of turbulent potential energy and turbulent kinetic
energy needs to be specified (Hanazaki and Hunt
1996). We follow Hunt et al. (1988) and define this ratio
in terms of the vertical velocity’s contribution to the
kinetic energy:

�0 �
b2�0�

u3
2N2

. �21�

With this definition of �0, the initial spectrum of the
buoyancy fluctuations is

Ebb�	, 0� �
E�	�

4�	2 �2
3

N2�0�. �22�

After the initial conditions for the spectra are speci-
fied, the equations for either the Fourier components
or the spectra can be solved. When there is no mean
shear (S � 0), viscosity, and diffusion, we obtain ana-
lytical expressions for the mean-squared velocity and
buoyancy gradients. Otherwise, the spectral equations
are solved numerically with a fourth-order Runge–
Kutta method with adaptive time stepping. Several
tests were done to ensure adequate resolution in wave-
number space since spectra become concentrated in a
small area at large times (Rogers 1991).
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3. Unsheared, stratified turbulence

In this section we examine the small-scale structure
of turbulence in a stratified fluid without mean velocity
gradients or shear. For this case the system (10) be-
comes

dû1

dt
�

	1	3

	2 b̂ � �	2û1, �23a�

dû2

dt
�

	2	3

	2 b̂ � �	2û2, �23b�

dû3

dt
� �	3

2

	2 � 1�b̂ � �	2û3, and �23c�

db̂

dt
� N2û3 � D	2b̂. �23d�

Hanazaki and Hunt (1996) have solved this set of equa-
tions analytically for the Fourier amplitudes and spec-
tra, and this information can be used to analyze the
mean-squared velocity and buoyancy gradients. After
considering initially isotropic turbulence with no initial
density fluctuations, we consider the effect of nonzero
initial density fluctuations and different initial struc-
ture.

a. Initially isotropic turbulence

The small-scale structure of the velocity and buoy-
ancy fields is not isotropic, though it is axisymmetric
about the vertical as Yamazaki and Osborn (1990) as-
sumed. For an inviscid, nondiffusive fluid (� � D � 0),
the mean-squared gradients for isotropic initial condi-
tions are

u1,1
2 � u2,2

2

�
2

15
A�1 �

3
16 �1 �

2
3

�0� �1 �
15
4

I3,2�Nt���,

�24a�

u1,2
2 � u2,1

2

�
4

15
A�1 �

1
32 �1 �

2
3

�0� �1 �
15
4

I3,2�Nt���,

�24b�

u1,3
2 � u2,3

2

�
4

15
A�1 �

3
16 �1 �

2
3

�0� �1 �
5
2

I1,4�Nt���,

�24c�

u3,1
2 � u3,2

2

�
2

15
A��1 �

2
3

�0� �
15
16 �1 �

2
3

�0�I5,0�Nt��,

�24d�

u3,3
2 �

1
15

A��1 �
2
3

�0� �
15
4 �1 �

2
3

�0�I3,2�Nt��,

�24e�

b,1
2 � b,2

2

�
1
3

AN2��1 �
2
3

�0� �
3
4 �1 �

2
3

�0�I3,0�Nt��,

�24f�

and

b,3
2 �

1
3

AN2��1 �
2
3

�0� �
3
2 �1 �

2
3

�0�I1,2�Nt��,

�24g�

where

A � �
0




	2E�	� d	

and

Im,n�Nt� � �
0

�

sinm� cosn� cos�2Nt sin�� d�, �25�

which can be expressed in terms of Struve functions (L.
Glasser 1995, personal communication). Time series
of these quantities for �0 � 0 are normalized by either
�/� � u2

i,j or �/2D � b2
,j and plotted against buoyancy

time Nt in Figs. 1a and 1b. The axisymmetry about the
vertical is not surprising since the isotropic initial con-
ditions are axisymmetric about the vertical (and every
other direction) and the structure of the momentum
equations in (23a) and (23b) shows that the two hori-
zontal directions are indistinguishable.

For the case of �0 � 0 Table 1 summarizes the errors
in dissipation incurred by assuming isotropy and com-
puting � from the average value of a single gradient.
Because the mean-squared gradients approach their av-
erage values as Nt increases, an asymptotic expansion
method can be used to determine the average values.
The method of stationary phase (Bleistein and Han-
delsman 1986, section 6.1) shows that the amplitude of
the integrals in (24) decreases as (Nt)�1/2 as Nt → �.
Thus, the average values are obtained simply by ignor-
ing the integrals. Values of � computed with a gradient
of a horizontal velocity component are 8%–30% high,
while dissipation computed with a gradient of the ver-
tical velocity is 33% low (Fig. 1a). Unlike the velocity
field, the density field (Fig. 1b) is isotropic asymptoti-
cally. For unsheared, initially isotropic turbulence, es-
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timates of � using the isotropic assumption are quite
accurate for both horizontal and vertical gradients.

RDT predicts that viscous effects do not alter the
results for the scalar field, but they do affect the veloc-
ity field for low Gr (Table 1). An asymptotic analysis
similar to that of Hanazaki and Hunt (1996) shows that
for large Nt all of the mean-squared buoyancy gradients
are equal, regardless of the strength of viscous and dif-
fusive effects. For the velocity field, viscous effects
drive the normalized gradients toward isotropic values.
For Gr � 103 the dissipation errors are close to the values
in the inviscid case (Gr → �) and they approach zero as
Gr decreases, or viscosity becomes more important.
Schmidt number effects are important only at low Gr.

These results can also be compared with those from
previous field measurements. For example, the axisym-
metric turbulence formulas developed by Yamazaki

and Osborn (1990) were motivated by three observa-
tions from the oceanic measurements of Osborn and
Lueck (1985) and Yamazaki et al. (1990): 1) u2

1,3 � u2
2,3,

2) u2
2,3 � u2

2,1, and 3) u2
3,1 � u2

2,1 when �/�N2 	 20, and
u2

3,1 
 u2
2,1 when �/�N2 
 20. For initially isotropic, un-

sheared turbulence, calculations from RDT are consis-
tent with these observations. RDT predicts that u2

1,3

and u2
2,3 are identically equal, that u2

2,3 and u2
2,1 are equal

within 20%–25%, and that u2
3,1 
 u2

2,1. Since RDT for
the small scales holds when �/�N2 is small, the last result
is consistent with that of Osborn and Lueck (1985) and
Yamazaki et al. (1990).

Comparing with results from laboratory experiments
and numerical simulations can indicate the usefulness
and limitations of the RDT for predicting the small-
scale structure. Figure 2a shows values of u2

3,1/u2
1,1 from

RDT for two sets of parameters: the stratified wind
tunnel measurements of Thoroddsen and Van Atta
(1992) and the numerical simulations of Riley et al.
(1981). RDT qualitatively predicts the laboratory re-
sults for Nt 
 2 and the simulation results for somewhat
larger buoyancy times, although the results agree quan-
titatively only for Nt 
 1. The discrepancy can be at-
tributed to the strength of the stratification. Although
�/�N2 and the Froude number based on velocity and
length scales of the large eddies become small down-
stream of the grid in the laboratory experiments, they
both can be quite large initially. For example,
Thoroddsen and Van Atta (1992) give a range of
0.015 
 �/�N2 
 15 000. The smaller initial Froude
number of 0.3 in the simulations leads to better agree-
ment with the RDT results. RDT does reproduce the
observation that the amplitude of oscillation decreases
as viscous effects become stronger (i.e., Gr decreases).

Mean-squared buoyancy gradients from RDT can
also be compared with previous results. For example,
Fig. 2b shows b2

,3/b2
,1 from RDT, laboratory experiments

of Thoroddsen and Van Atta (1996), and the direct
numerical simulations of Gerz and Schumann (1991).
As in the case of the mean-squared velocity gradients,
results from RDT and the numerical simulations com-
pare fairly well for about 0.5 of a buoyancy period
(Nt � 3). Although the laboratory result b2

,2/b2
,1 � 1.17

(Thoroddsen and Van Atta 1996) is approximately
predicted by RDT, which gives b2

,1 � b2
,2, values of b2

,3/b
2
,1

from RDT and the laboratory experiments do not com-
pare as well. In particular, the initial values from the
laboratory experiments differ substantially from those
in the other two datasets. Thoroddsen and Van Atta
(1996) concluded that the simulations of Gerz and
Schumann (1991) were started from an anisotropic
state. However, an analysis of the behavior of the buoy-
ancy gradients in (24f) and (24g) as Nt→0 shows that
the ratio is 1/2, as in the direct numerical simulations.

Dissipation formulas that assume isotropy work well
in unsheared turbulence (Table 1); they predict dissi-
pation to within �33%. Nevertheless, the results in

FIG. 1. Mean-squared gradients for inviscid, unsheared, initially
isotropic turbulence with no initial buoyancy fluctuations. (a) Ve-
locity gradients normalized by �/�, �: u2

1,1 � u2
2,2; �: u2

1,2 � u2
2,1; �:

u2
1,3 � u2

2,3; �: u2
3,1 � u2

3,2; �: u2
3,3. (b) Buoyancy gradients normal-

ized by �/2D, �: b2
,1 � b2

,2; ●: b2
,3. In both plots the dotted lines

indicate the ratios for isotropic turbulence. The isotropic value is
not achieved initially in (b) because the buoyancy gradients and �
are initially zero.
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Table 1 can be used to develop improved dissipation
formulas that require only one mean-squared gradient.
For example, one can compute TKE dissipation with
�/�u2

3,3 � 15/(1 � 0.333) � 22.5 or �/�u2
1,3 � (15/2)/(1 �

0.083) � 6.9. Also, the assumptions behind the simpli-
fied formulas of Yamazaki and Osborn (1990) can be
assessed. As mentioned above, the turbulence is exactly
axisymmetric, as Yamazaki and Osborn (1990) as-
sumed. However, to reduce the number of required
gradients from four to two, Yamazaki and Osborn
(1990) developed semi-isotropic formulas that give up-
per and lower bounds on the dissipation. Their analysis
is based on the behavior of three gradient ratios:

1 �
u3,3

2

u2,1
2

, 2 �
u3,1

2

u2,1
2

, and 3 �
u2,3

2

u2,1
2

. �26�

The semi-isotropic formulas were developed for �3 � 1
(Yamazaki et al. 1990; Yamazaki and Osborn 1993),
and the lower bound �L and upper bound �U corre-
spond to �1 � 1 and �1 � �2/2, respectively:

�L � ��11
2

u2,1
2 � 2u3,1

2 � and �27a�

�U � ��14
3

u2,1
2 �

17
6

u3,1
2 �. �27b�

In the inviscid, nondiffusive case, RDT predicts �3 �
1.19 and gives mean values of �1 and �2 of 0.26 and 0.52,
respectively. Therefore, RDT suggests that the upper-
bound formula of Yamazaki and Osborn (1990) is more
appropriate. In fact, the upper-bound (27b) overpre-
dicts � from RDT by only 5%.

One difficulty with using these results in the field is
that the evolution time of the turbulence (i.e., Nt) is
unknown. In practice, measurements of the mean-
squared gradients are averaged over a certain period of
time. To assess the averaging time, the cumulative time
average of the mean-squared gradients was compared

with the mean or asymptotic values. The averaging time
was arbitrarily defined as the time beyond which the
cumulative time average is within 5% of the limiting
value. This value is conservative because the greatest
deviation from the mean value occurs just after the
turbulence is generated. Averaging times for all gradi-
ents are shown in Table 1. These results suggest that
estimates of the mean values of the mean-squared gra-
dients can be obtained by averaging for a time between
0.2N�1 and 3N�1.

Applying these guidelines to field measurements is
complicated. The sampling interval for profilers can be
larger than the required averaging time. For example,
in the measurements of Toole et al. (1997), the sam-
pling interval of 3 hours exceeded the averaging time of
about 18 minutes for measuring u2

3,3 in fluid with a
buoyancy frequency of 1.5 � 10�3 s�1. The guidelines
for averaging time can be applied more easily to mea-
surements from a towed vehicle or submarine. In the
experiments of Rehmann and Duda (2000) near the
seafloor of the New England continental shelf, the
buoyancy frequency of 20 cph leads to an averaging
time for mean-squared longitudinal conductivity gradi-
ents (ignoring effects of shear) of about 54 s. Much
longer records were used to compute averages of the
dissipation of conductivity variance; the data came
from different horizontal positions but similar density
levels.

b. Effects of initial conditions

The initial conditions can affect the structure. Inspec-
tion of (24) shows that initial buoyancy fluctuations,
which are parameterized by the initial energy ratio �0,
do not affect the axisymmetry about the vertical and
they do not change the result that on average each of
the buoyancy gradients contributes equally to �. How-
ever, initial buoyancy fluctuations do change the mean
values of the mean-squared velocity gradients and thus

TABLE 1. Summary of the calculations for unsheared, initially isotropic turbulence with no initial buoyancy fluctuations. Errors in
assuming isotropy to compute either � or � are shown; values for finite Gr cases are based on averages from 0 
 Nt 
30. Also shown
is the buoyancy time (Nt)avg at which the average of the mean-squared gradient is within 5% of the asymptotic or mean value in the
inviscid case (Gr → �). A percentage error P can be converted to a factor F by F � (1 � P/100)sgn(P). For example, an error of �33.3%
means the dissipation estimate is low by a factor of 1.5.

Dissipation error (%)

Gr � 103 Gr � 102

Gradient Gr → � Sc � 7 Sc � 700 Sc � 7 Sc � 700 (Nt)avg

u2
1,1 8.3 7.8 7.7 2.2 1.2 1.9

u2
1,2 29.2 26.6 26.0 6.4 2.1 0.2

u2
1,3 8.3 7.9 7.7 2.5 0.7 2.9

u2
3,1 �33.3 �30.9 �30.3 �8.4 �3.2 1.7

u2
3,3 �33.3 �29.7 �29.0 �6.3 �0.8 2.2

b2
,1 0.0 0.0 0.0 0.0 0.0 1.9

b2
,3 0.0 0.0 0.0 0.0 0.0 3.2
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the dissipation estimate errors (Fig. 3). For the range
0 
 �0 
 1, which corresponds to the range studied
by Hunt et al. (1988) and Hanazaki and Hunt (1996),
an increase in initial buoyancy fluctuations makes the
small-scale velocity field more isotropic. In fact, the
small scales are exactly isotropic for all time when
�0 � 3/2, or when by definition [see (21)] the initial
turbulent kinetic energy and turbulent potential energy
are equal.

Although the performance of � formulas based on
isotropy improves as �0 increases from zero to 3/2, the
error in the � estimates increases as �0 increases further
(Fig. 3). The limit �0 → � represents a flow energized
by density fluctuations left behind by turbulence that
previously decayed (e.g., Gerz and Yamazaki 1993).
Equation (24) can be used to show that dissipation es-
timates based on u2

1,1, u2
2,2, u2

1,3, or u2
2,3 underestimate �

by 25%. Unlike cases with relatively small initial buoy-
ancy fluctuations, estimates of dissipation based on gra-
dients of the vertical velocity overestimate � in buoy-
ancy-generated turbulence. Here all gradients of verti-
cal velocity overpredict � by 100%. The largest error,
however, comes from assuming isotropy and using u2

1,2

�or u2
2,1), which underestimates � by 87.5%, or a factor

of 8.
The initial structure can also affect the subsequent

structure of the turbulence. Specifying the initial struc-
ture is somewhat more arbitrary than specifying initial
density fluctuations. For �1 � 1/4 and �1 � 1 we exam-
ine inviscid, nondiffusive flows initialized with turbu-
lence axisymmetric about x3 and flows initialized with
turbulence axisymmetric about x2. As discussed in sec-
tion 3a, the former value of �1 is suggested by the study
of Yamazaki and Osborn (1990); the latter value is se-
lected simply to examine the dependence on �1. The
case of symmetry about x3 could represent turbulence
that is immediately affected by strong stratification.
The case of symmetry about x2 was chosen to deter-
mine whether the stratification forces the flow back to
an axisymmetric state.

As in the isotropic case, the velocity gradients ap-
proach their mean values as Nt → � when the initial
turbulence is axisymmetric about either x3 or x2. We

FIG. 3. Errors in dissipation estimates using a single velocity
gradient and isotropy as a function of the initial energy ratio �0.
Circles denote the errors for u2

1,1 � u2
2,2 and u2

1,3 � u2
2,3. Triangles

denote the errors for u2
1,2 � u2

2,1. Crosses denote the errors for
u2

3,1 � u2
3,2 and u2

3,3.

FIG. 2. Comparison with previous results. (a) Mean-squared
velocity gradients; dots come from the direct numerical simulation
of Riley et al. (1981) with N � 3.14 rad s�1, and crosses denote the
grid turbulence measurements of Thoroddsen and Van Atta
(1992) in a stratified wind tunnel with N � 3.03 rad s�1. The lines
are computed with RDT; the solid line (Gr � 1.6, Sc � 0.7)
corresponds to the experiments of Thoroddsen and Van Atta
(1992), while the dashed line (Gr � 83, Sc �1) corresponds to the
simulations of Riley et al. (1981). The previous data were taken
from Fig. 4 of Thoroddsen and Van Atta (1992). (b) Mean-
squared buoyancy gradients; dots come from the direct numerical
simulation of Gerz and Schumann (1991), while the crosses de-
note measurements of Thoroddsen and Van Atta (1996) for
1.25 � N � 4.03 rad s�1. The solid line, which is computed with
RDT, corresponds to both the experiments and the simulations.
The previous data were taken from Fig. 13 of Thoroddsen and
Van Atta (1996).
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derive the mean values with the method of stationary
phase and compute the error incurred by assuming isot-
ropy for cases with �1 � 1/4 and �1 � 1 (Fig. 4). When
the initial turbulence is axisymmetric about x3, it retains
its axisymmetry; for example, the horizontal directions
are interchangeable, as in a flow initialized with isotro-
pic turbulence. However, when the initial turbulence is
axisymmetric about x2, axisymmetry about the vertical
does not develop. Even though the stratification is
strong, effects of the initial structure persist.

The error in dissipation estimates using a single gra-
dient and assuming isotropy depends on the initial
value of �1. In some cases, the error increases and in
some it decreases. Estimates based on a gradient of a
horizontal velocity component either slightly underes-
timate � or overpredict it by 5%–70%. As in the iso-
tropic case, the largest errors occur when a gradient of
the vertical velocity component is used. For example,
when �1 � 1/4, which corresponds to the conditions
Yamazaki and Osborn (1990) used to develop their up-
per-bound formula, � can be low by about 50% when
the initial turbulence is symmetric about x3 and about
30%–80% when the initial turbulence is symmetric
about x2.

Errors in estimating � can also be evaluated. As in
the case of initially isotropic turbulence, the isotropic
assumption works well for a flow initialized with tur-
bulence symmetric about x3. That is, on average each of
the buoyancy gradients makes up one-third of the sca-
lar variance. For a flow initialized with turbulence sym-
metric about x2 the vertical gradient also contributes
one third of the scalar variance. However, the amounts
from the two horizontal gradients vary with the initial

value of �1. In particular, the method of stationary
phase can be used to show that

3b,1
2

��2D
�

3
2

�
1

41
and �28a�

3b,2
2

��2D
�

1
2

�
1

41
. �28b�

As with the velocity gradients, the error computing � is
larger for �1 � 1/4 than for �1 � 1; using b2

,2 overesti-
mates � by 50% and using b2

,1 underestimates � by 50%.

4. Sheared, stratified turbulence

In this section we consider the effects of shear on the
small-scale structure. Spectral equations like (14) de-
rived from the full (10a)–(10d) for the Fourier ampli-
tudes are solved numerically for different values of the
Richardson number Ri � (N/S)2, and the spectra are
integrated to yield the mean-squared gradients. After
presenting the results and discussing the main features,
we compare with the results of experiments and simu-
lations on sheared, stratified turbulence and discuss the
implications of the results for dissipation measurements
in the ocean.

The structure of the small-scale velocity and buoy-
ancy fields is not simple. Normalized mean-squared ve-
locity gradients and buoyancy gradients are plotted as
functions of dimensionless time St in Figs. 5 and 6 for
Ri � 0.25 and Ri � 1.0 and zero viscosity and diffusiv-
ity. Only the inviscid, nondiffusive case is plotted be-
cause it displays many features also seen in the viscous,
diffusive cases. For the parameter range considered the
dissipative scales are neither isotropic nor axisymmetric
about the vertical, although for large St the velocity
field approaches axisymmetry about the vertical for
large Ri (Fig. 5b) and the buoyancy field approaches
axisymmetry for smaller Ri (Fig. 6a). This lack of
simple structure is expected: In cases in which the strati-
fication is strong enough to differentiate the vertical
direction from the others the principal axis of the shear-
ing motion will also be important when S � N, or
Ri � 1.

Despite the lack of a simple structure, many qualita-
tive features of the evolution of the mean-squared ve-
locity gradients can be observed at all values in the
ranges of Richardson, Grashof, and Schmidt numbers.
For example, many of the ratios reach approximately
constant values within a few eddy turnover times (�
S�1). All gradients of the vertical velocity become small
rapidly; except for low Gr and high Ri, each of these
gradients contributes less than 5% to the dissipation by
about St � 2, as in the inviscid case. Also, normalized
u2

2,2 and u2
2,3 vary relatively little over the times consid-

ered even in the viscous, diffusive case. Over the pa-
rameter range, the vertical gradient of the buoyancy
contributes the most to �, while u2

1,2 and u2
1,3 contribute

FIG. 4. Errors in dissipation estimates using a single velocity
gradient and isotropy for flows with different initial structure. The
black bars correspond to isotropic initial conditions (�1 � 1/2),
and the white and gray bars corresponds to initial conditions with
symmetry about the x2 axis and the x3 axis, respectively. In each
group, the two leftmost bars are for �1 � 1/4, while the rightmost
two bars are for �1 � 1.
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more than 20% each to the dissipation. A vertical gra-
dient of the x1 component of mean velocity would be
expected to rotate large eddies to be aligned with the x1

direction and therefore increase the gradients of u1 in
the two normal directions. For the weak turbulence
considered here, the shear appears to affect the small
eddies too.

Table 2 shows the errors in dissipation estimates that
use isotropy as averages from 0 
 St 
 20. Isotropic
formulas using u2

1,2 and u2
1,3 overestimate �, while for-

mulas using gradients of the vertical velocity underes-
timate � substantially. Isotropic formulas using the ver-
tical buoyancy gradient overestimate �, while formulas
using horizontal buoyancy gradient either underesti-
mate or slightly overestimate �. The results in Table 2
suggest using the isotropic formula

� �
15
2

�u2,3
2 �29�

to estimate the TKE dissipation because it incurs less
that 15% error for the parameter range used. Further-
more, because u2

2,3 varies very little with time (Fig. 5),
fewer data would be needed to obtain a converged av-
eraged. As in the case without shear, the results in
Table 2 can be used to develop dissipation formulas
using any of the gradients; however, u2

2,3 varies least
over the range of Ri and Gr.

The results can also be compared with results from
other studies of sheared, stratified turbulence. As in the
case of unsheared turbulence, results from RDT are
consistent with the field observations of Yamazaki et al.
(1990). For 0.25 
 Ri 
 1 and high Gr, u2

2,1 and u2
2,3 are

comparable, as they are when S � 0. Shear makes u2
3,1

much less than u2
2,1, or �2 � 1; such values occur for

�/�N2 
 10 (Yamazaki and Osborn 1990). One differ-
ence from the unsheared case is that u2

1,3 exceeds u2
2,3.

Also, RDT produces much lower values of u2
3,1 than

found in laboratory experiments. For example, in the
unstratified wind tunnel experiments of Tavoularis and
Corrsin (1981) u2

3,1/u2
1,1 was approximately 1.5. When

FIG. 6. Mean-squared buoyancy gradients normalized by �/2D
for inviscid, sheared stratified turbulence with an isotropic initial
velocity field, �: b2

,1; �: b2
,2; ●: b2

,3; (a) Ri � 0.25, (b) Ri � 1.0.

FIG. 5. Mean-squared velocity gradients normalized by �/� for
inviscid, sheared stratified turbulence with an isotropic initial ve-
locity field, �: u2

1,1; �: u2
1,2; �: u2

1,3; �: u2
2,1; �: u2

2,2; ●: u2
2,3; �: u2

3,1;
*: u2

3,2; �: u2
3,3; (a) Ri � 0.25, (b) Ri � 1.0.
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the stratification is stronger, however, Piccirillo and
Van Atta (1997) found that u2

3,1/u2
1,1 fell below the iso-

tropic value of 2 when �/�N2 
 2000 and reached values
between 0.1 and 0.6 for �/�N2 
 40. The results from
RDT (Fig. 5) indicate an even stronger effect of the
stratification: when St 	 5, u2

3,1/u2
1,1 is very close to zero.

The small-scale velocity field predicted by RDT
shares many features with those from direct numerical
simulations of sheared, stratified, homogenous turbu-
lence (Itsweire et al. 1993) and turbulence due to
Kelvin–Helmholtz instability (Smyth and Moum 2000).
Like the simulations of Itsweire et al. (1993) and cases
with low �/�N2 from Smyth and Moum (2000), RDT
shows that 1) streamwise gradients are reduced below
the isotropic values when Gr is finite, 2) u2

1,3, u2
2,3, and

u2
1,2 are the main contributors to the dissipation, and 3)

gradients of the vertical velocity are small. For the spe-
cific case of Ri � 0.21, Gr � 71, and Sc � 2, RDT
overpredicts u2

1,2 and underpredicts u2
2,2 and horizontal

gradients of vertical velocity found by Itsweire et al.
(1993; Fig. 7). However, both RDT and the simulations
of Itsweire et al. (1993) show the same trends of the
gradients compared to the isotropic values.

The small-scale buoyancy field from RDT is also
similar to that in the numerical simulations. RDT pre-
dicts that b2

,3 exceeds the isotropic value, b2
,1 falls well

below the isotropic value, and b2
,2 is either below or near

the isotropic value (Fig. 6 and Table 2). Although the
scalar field tends to become isotropic at Cox numbers
above 100 in the simulations of Smyth and Moum
(2000), the predictions for lower Cox numbers agree
qualitatively with the RDT results. For homogenous
turbulence with 0.075 
 Ri 
 1, Itsweire et al. (1993)
found that estimates of � based on the vertical buoy-
ancy gradient were up to a factor of 2 high, while
estimates based on the streamwise buoyancy gradient

were up to a factor of 4 low. The percentages in Table
2 give similar results: RDT predicts that formulas
using b2

,1 overestimate by a factor of 2, and formulas using
b2

,3 underestimate by a factor of about 3.
The results above can be used to evaluate the per-

formance of other formulas for computing the dissipa-
tion of turbulent kinetic energy in sheared, stratified
turbulence. Table 3 lists errors incurred by using iso-
tropic formulas using two gradients (Yamazaki et al.
1990; Itsweire et al. 1993), the semi-isotropic upper-
bound formula for axisymmetric turbulence (Yamazaki
and Osborn 1990; Yamazaki and Osborn 1993), a for-

FIG. 7. Contributions of the mean-squared velocity gradients to
the dissipation for Ri � 0.21. The black bar in each group comes
from RDT with Gr � 71 and Sc � 2, the gray bar comes from the
direct numerical simulations of Itsweire et al. (1993), and the
white bar is for isotropic turbulence. The data were averaged from
St � 2 to St � 8, as in Itsweire et al. (1993).

TABLE 2. Summary of the calculations for sheared, initially isotropic turbulence with no initial buoyancy fluctuations. Errors in
assuming isotropy to compute either � or � are shown. Values are based on averages from 0 
 St 
 20.

Dissipation error (%)

Ri � 0.25 Ri � 1

Gradient Gr → � Gr � 103 Gr � 102 Gr → � Gr � 103 Gr � 102

u2
1,1 29 �13 �50 38 �17 �54

u2
1,2 99 121 105 77 120 86

u2
1,3 94 151 203 40 100 139

u2
2,1 4 �48 �72 42 �43 �71

u2
2,2 2 �17 �36 31 12 �9

u2
2,3 0 �4 �5 14 9 13

u2
3,1 �93 �93 �93 �94 �94 �93

u2
3,2 �85 �82 �76 �81 �69 �52

u2
3,3 �68 �59 �38 �65 �40 21

b2
,1 �27 �35 �55 �48 �52 �63

b2
,2 �32 �32 �38 4 0 �10

b2
,3 58 67 93 44 52 74
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mula assuming axisymmetry about x1, which Smyth and
Moum (2000) tested, and (29). All formulas predict �
within �25% in unsheared turbulence. For finite Ri
both the upper-bound formula of Yamazaki and Os-
born (1990) and Yamazaki and Osborn (1993) and the
formula based on measurements from towing along the
direction of the current substantially underestimate the
dissipation, while the large contribution of u2

1,3 causes
the formula that uses a vertical profile to overestimate
�. However, towing across the current direction leads to
a good estimate. Results from the numerical simula-
tions of Itsweire et al. (1993) and Smyth and Moum
(2000) support some of the observations from RDT.

The most consistently accurate formulas are the for-
mula that assumes axisymmetry about x1 and (29). Both
estimate � within �20%, and both predict the dissipa-
tion exactly in isotropic turbulence. Because both dis-
sipation estimates vary little in time (e.g., Fig. 5), rela-
tively short data records would be required to obtain a
converged average. One major advantage of (29) is that
is requires only one gradient—one that vertically pro-
filing instruments usually measure. In contrast, the for-
mula assuming axisymmetry requires four, or two to
three more than are usually measured.

Both formulas (and the others in Table 3) suffer from
an additional source of uncertainty that is not present in
unsheared turbulence: Unless the x1 and x2 directions
can be distinguished, results computed with formulas that
use any gradients other than u2

3,3 will be uncertain. For ex-
ample, if x1 and x2 are mistaken for one another—or if
u1 instead of u2 is measured—the dissipation computed
with (29), mistakenly using u2

1,3 instead of u2
2,3, can be

high by a factor of 2–3. Measuring finescale velocity
profiles would help to identify the x1 and x2 directions.

Also, under the conditions of the RDT (i.e., low �/�N2),
u2

1,3 exceeds u2
2,3 for Ri � 1.

5. Summary

Because estimates of vertical mixing in the ocean
computed from indirect, dissipation-based methods
rely on assumptions of a simple small-scale structure,
we analyzed the structure theoretically to quantify the
effects of anisotropy at the small scales. Assuming that
the stratification is very strong, we computed mean-
squared velocity and buoyancy gradients with rapid dis-
tortion theory (RDT). In this approach, nonlinear, ed-
dy–eddy interactions are neglected because the time
scale of the mean flow (e.g., N�1) is assumed to be small
compared to the eddy turnover time. Although this as-
sumption restricts the results to flows with small �/�N2,
many of the RDT predictions are consistent with results
from field, laboratory, and numerical studies. Still, the
main use of our work is to evaluate the performance of
dissipation formulas in very strongly stratified flows. If
the isotropy assumption is adequate in the extreme
cases studied here, it should be adequate in typical oce-
anic cases.

Existing dissipation formulas work well in unsheared,
stratified turbulence. Unsheared turbulence that is ini-
tially isotropic remains axisymmetric about the vertical
direction, as Yamazaki and Osborn (1990) assumed in
developing their dissipation formulas. All formulas
tested predicted � within �33%, and the performance
improved as viscous effects became stronger. Unlike
the velocity field, the density field is isotropic on aver-
age; when there is no shear, estimates of � using the

TABLE 3. Evaluation of other formulas to compute the dissipation of turbulent kinetic energy.

Dissipation error (%)

Ri → � Ri � 0.25 Ri � 1

Formula Gr � 103 102 103 102 103 102

Tow along current direction

�/� �
15
4

�u2,1
2 � u3,1

2 �

�2 �1 �71 �83 �68 �82

Tow across current direction

�/� �
15
4

�u2,1
2 � u3,2

2 �

�2 �1 20 14 25 17

Vertical profile

�/� �
15
4

�u1,3
2 � u2,3

2 �

8 2 73 99 54 76

Yamazaki and Osborn (1993) upper bound

�/� �
14
3 �u2,1

2 �
17
6

u3,1
2 �

5 1 �65 �80 �62 �80

Axisymmetric about x1

�/� � �u2
1,1 � 2u2

1,2 � 2u2
2,1 � 8u2

2,2

�2 0 �11 �8 0 19

Equation (29)

�/� �
15
2

u2,3
2

8 2 �4 �5 9 13
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isotropic assumption are quite accurate for both hori-
zontal and vertical gradients. Effects of the initial con-
ditions can be significant: Assuming isotropy in flows
energized by buoyancy fluctuations from previous tur-
bulent events can lead to large errors in �. Also, in cases
with no initial symmetry about the vertical, no symme-
try develops, and, in the isotropic case, the largest er-
rors occur when a gradient of the vertical velocity com-
ponent is used.

Shear disrupts the axisymmetry of stratified turbu-
lence and leads to larger errors in some of the dissipa-
tion formulas. Gradients of the vertical velocity become
small quickly and contribute little to �, while shears of
the longitudinal velocity (i.e., u2

1,2 and u2
1,3) contribute

the most to the dissipation. The small-scale buoyancy
field is also anisotropic; a formula for � based on the
vertical buoyancy gradient is a factor of about 2 (i.e.,
93%) high, while estimates of � using b2

,1 would be low
by up to a factor of about 3 (i.e., �63%). The perfor-
mance of other formulas for � varies (Table 3); for
example, a formula based on vertical profiles overesti-
mates �, while a formula based on tows along the cur-
rent direction greatly underestimates �. If the direction
of the mean flow can be identified, then the isotropic
formula

� �
15
2

�u2,3
2

works quite well. This formula has the advantages that
it uses a single measured gradient, predicts � to within
8% for unsheared turbulence as well, and works well
for both weak turbulence in strong stratification and
more energetic turbulence in which the small scales can
be expected to be isotropic. Also, since u2

2,3 varies little
with time, uncertainty introduced by not knowing when
the turbulence was generated will be small.
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