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3 THE ORTHOGONAL CASE

1 Introduction

This document describes the relationship between the spectrum of velocity, estimated from
data collected with an ADCP or an ADV, to the spectrum of shear, estimated from data
collected with a shear probe. It also settles the confusion brought about by expressing the
spectrum of velocity in the inertial subrange using units of cpm (cycles per meter) compared
to units of rad m−1 (radians per meter).

2 Background

When the velocity and shear are measured at a fixed location, we usually use the mean flow
to provide a “profile” against the direction of the flow, say the x-direction.

The spectrum of the velocity component that is orthogonal to the direction of profiling,
is conventionally designated by Φ22, and this is considered the “orthogonal” case. For each
spatial direction there are two velocity components in the orthogonal directions, for example,
v(x) and w(x). The gradients of these velocity components are then shears. A velocity field
can have six components of shear – one pair for each of the three possible directions.

The spectrum of the velocity component that is parallel to the flow is designated by Φ11

and this is considered the “parallel” case. The gradient of this velocity component is the
rate-of-strain. There are three such possibilities, u(x), v(y), and w(z), where the designated
velocity components are parallel to the three orthogonal directions, x, y, and z.

It is possible for velocity and shear data to be collected by literally profiling through the
flow, which is frequently done using airfoil-type shear probes mounted on a freely falling
instrument. The above convention applies equally to this method of collecting data.

3 The Orthogonal Case

Let w be a velocity component measured along the direction x where the direction of the
velocity is orthogonal to that of x. The spectra of velocity and shear are related by(

2πk̂
)2

Φ22(k̂) = ΨS(k̂) = k2
s

(
ϵν5

)1/4
G2

(
k̂/ks

)
(1)

where G2 is the Nasmyth shear spectrum tabulated by [1], Φ22 is the velocity spectrum,
ΨS is the shear spectrum, k̂ is the cyclic wavenumber in the x direction (in units of cpm),
ks = (ϵ/ν3)1/4 is the Kolmogorov wavenumber, ϵ the rate of dissipation of turbulence kinetic
energy, and ν the kinematic viscosity.

An analytic form has been fitted to G2 by Wolk et. al [2] and this fit has been further refined
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5 THE PROBLEM OF WAVENUMBER UNITS

by RSI to yield

ΨS

(
k̂/ks

)
=

8.05
(
k̂/ks

)1/3

1 + 20.6
(
k̂/ks

)3.715 . (2)

For simplicity, I will ignore the denominator in (2), unless its inclusion is important. There-
fore, the velocity spectrum in the inertial subrange is given by

Φ22(k̂) =
α

(2π)2
ϵ2/3k̂−5/3 = 0.204 ϵ2/3k̂−5/3 (3)

where α = 8.05 and 0.204 is the Kolmogorov constant for the orthogonal case, when the
wavenumber is expressed in units of cpm. This value is only 2 % larger than 1/5.

4 The Parallel Case

When the velocity component is in the same direction as the profile, then the spectrum of
velocity and of the rate-of-strain are both reduced by a factor of 3/4 in the inertial subrange.
That is, the velocity spectrum is given by

Φ11(k̂) = 0.153 ϵ2/3k̂−5/3 . (4)
The Kolmogorov constant for the parallel case is not significantly different from 3/20.

5 The problem of wavenumber units

There are many, particularly at Dalhousie University, that express the velocity spectrum in
terms of a wavenumber in units of radians per meter, which results in a spectrum of identical
form to (3) and (4) but with a different Kolmogorov constant. To translate from a spectrum
in units of cpm to one in units of rad m−1 we have the requirement that

Φ22(k) dk = ϕ22(k̂) dk̂ (5)

so that both spectra integrate to give the same variance of w, where k = 2πk̂, is the wavenum-
ber in units of rad m−1. Direct substitution into (3) gives

Φ22(k) dk =
α

(2π)2
ϵ2/3

(
k

2π

)−5/3 dk
2π

, (6)

which reduces to
Φ22(k) = 0.694 ϵ2/3k−5/3 . (7)

Thus, the Kolmogorov constant based on the Nasmyth spectrum, when it is expressed in
units of rad m−1, is 0.693 which is 7 % larger than the value of 0.65 used by Alex Hay in
his OS poster shown in Honolulu in 2014. These values are not significantly different from
2/3 because there are probably no high Reynolds number measurements accurate to better
than 4 %. The Kolmogorov constant for units of rad m−1 is a factor of (2π)2/3 larger than
the constant for a spectrum in units of cpm.
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7 UPPER LIMIT OF THE INERTIAL SUBRANGE

6 The General Case

Let A be the Kolmogorov constant regardless of units used for the wavenumber. The rate of
dissipation can then be deciphered directly by plotting

ϵ =

(
1

A
Φii(k)k

5/3

)3/2

(8)

where the value of A depends on the units of wavenumber k, the velocity component, and
the direction of profiling. The values of i = 1 and i = 2 represent the parallel and orthogonal
cases, respectively. The Kolmogorov constant is summarized in Table 1.

Direction A [rad m−1] A [cpm]
Φ11 1/2 3/20
Φ22 2/3 1/5

Table 1: The Kolmogorov constant, A, for the cases of a velocity component that is parallel, Φ11,
and orthogonal, Φ22, to the direction of profiling, and for the two different units of wavenumber.

7 Upper Limit of the Inertial Subrange

At very high wavenumbers viscosity dampens the turbulent velocity fluctuations, and this is
indicated by the numerator in the non-dimensional shear spectrum (2). One way to quantify
the onset of viscous damping is to plot the non-dimensional spectrum multiplied by the
wavenumber raised to the power of −1/3 (Figure 1). This makes the spectrum flat within
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Figure 1: The non-dimensional wavenumber spectrum (2) scaled by (k̂/ks)
−1/3 to make its

level flat within the inertial subrange.

the inertial subrange. The spectrum falls below the power law of −5/3 by 10 % at a non-
dimensional wavenumber of k̂/ks = 0.027, which I somewhat arbitrarily will define as the
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upper limit of the inertial subrange. If the wavenumber is expressed in units of rad m−1

then the upper limit is larger by 2π and is at k/ks = 0.16. This applies to the orthogonal
case.

For the parallel case, the level of the velocity spectrum is lower by a factor of 3/4 and,
consequently, the inertial subrange must be larger by approximately a factor of 4/3.
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