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1 INTRODUCTION

1 Introduction

This document describes how to convert data collected with a Rockland Scientific International
Inc. (RSI) instrument into physical units for the shear-probe, FP07 thermistor and SBE7 micro-
conductivity signals, and for their gradients in the direction of profiling.

The methods described here are implemented by the function odas_p2mat.m of the ODAS Mat-
lab Library, version 4.2 and higher, which is supplied to all owners of RSI instruments. The func-
tion odas_p2mat.m converts raw data files into Matlab mat-files to support further data process-
ing.
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2 SHEAR PROBE FUNDAMENTALS

2 Shear probe fundamentals

The shear probe, also frequently called the ”air-foil” probe, was conceived by H. S. Ribner and
T. Siddon at the University of Toronto [1]. It was adapted for use in water by T. Osborn who
first used it in the ocean in 1972 [2]. Since then, it has become the standard sensor for measuring
oceanic turbulence at dissipation scales.

The shear probe consists of a piezo-ceramic bender that is mounted into the end of a stainless
steel sting with about one half of the length of the bender protruding outward (Figure 1). The
bender produces a charge in response to a bending force. In the frequency range of oceanic tur-
bulence (∼1 – 100 Hz), the impedance of the ceramic is extremely high (greater than ∼1 GΩ).
RSI uses a proprietary Teflon isolation to block moisture from reaching the bender, so that the
impedance of the probe remains extremely high (∼50 GΩ), indefinitely. A soft and pliable silicone-
rubber covers the assembly in an axial-symmetric form. The shape of the probe tip is similar to a
bullet.

Figure 1: Sketch of a shear probe and the relevant velocity vectors.

The bender is 1.5 mm wide and 0.5 mm thick. It bends far more easily in its thin direction than
in the other directions. (This is somewhat like a diving board at a pool which bends easily in one
direction only.) Thus, the shear probe responds only to the component of velocity perpendicular
to the broad side of the bender (the u component indicated in Figure 1). A flat surface is milled
into the side of the shear probe body and this flat is parallel to the broad side of the bender. The
flat is used to orient the probes when they are being mounted into their holders on the front of
an instrument. To measure two orthogonal components of velocity fluctuations (u and v), two
probes must be installed side-by-side with one probe rotated by 90° around its longitudinal axis
so that the pair sense orthogonal components of velocity fluctuations.

The shear probe responds linearly to cross-stream velocity fluctuations when the angle of attack
is small, |α| . 20°. A velocity component orthogonal to the axis of the probe produces a pressure
difference across the tip of the probe and this bends the beam very slightly. A detailed discussion
can be found in [3]. Bending the beam produces a charge given by

QP =
√
2ŜU2 sin(2α)

= 2
√
2Ŝ(U cosα)(U sinα)

= 2
√
2ŜWu

(1)
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2 SHEAR PROBE FUNDAMENTALS

where U is the total velocity vector, W is the velocity along the axis of the probe, u is the veloc-
ity orthogonal to the axis of the probe (and normal to the broad face of the ceramic beam), and
Ŝ is the sensitivity of the probe (Figure 1). The factor of 2

√
2 is an artifact of the method of cal-

ibration. Typical sensitivities are in the range of Ŝ = 0.05 − 0.10 × 10−9 C m2 s−2. This value is
slightly temperature dependent and increases with increasing temperature. The symbol C stands
for coulombs – a unit of charge.

There are two ways to capture the signal produced by a shear probe – a charge-transfer amplifier
and a high-impedance voltage amplifier. Calibrations can be made with either type of amplifier
with the calibration facility at RSI. All instruments produced by RSI use a charge-transfer am-
plifier. With a charge transfer amplifier, the charge produced by the shear probe is continuously
removed and transferred to a capacitor of known value and exceptional temperature and aging
stability (1 × 10−4 ◦C−1). The output voltage of the charge-transfer amplifier is the probe charge
divided by the capacitance, namely

EI =
QP

CI
=

2
√
2ŜWu

CI
(2)

where the subscript I refers to the capacitor in the charge-transfer amplifier in an instrument.
The charge-transfer amplifier actively holds the voltage across the ceramic beam in a shear probe
at zero. Thus, the lead capacitance of the connection between the shear probe and the amplifier
does not effect the output given by (2).

The shear probe is calibrated by rotating it at 1 Hz in a water jet of known flow and by varying
the angle of attack of the jet with respect to the axis of the probe [3]. The signal produced by
the probe is sinusoidal and has a frequency of 1 Hz. We measure the rms voltage of the output
of the charge-transfer amplifier in the calibrator. The capacitor used in the charge-transfer am-
plifier in the calibrator has a value of CC = 1.50 nF±1 %. This rms voltage divided by the speed
squared is then regressed against sin(2α) to derive the sensitivity of the probes. The sensitivity is
the slope of the best fit of

Erms
C

U2
versus sin(2α) (3)

Where Erms
C is the root-mean-square (rms) voltage produced by the shear probe. Using the rms

voltage rather than the peak voltage accounts for the factor of
√
2 in equation (1). Thus, the

peak voltage produced by the probe in the calibrator is

EC =
QP

CC

=

√
2ŜU2

CC
sin(2α)

=
2
√
2ŜWu

CC

= 2
√
2SWu

(4)

where the subscripts C refer to the calibrator and we have defined
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2 SHEAR PROBE FUNDAMENTALS

S =
Ŝ

CC
. (5)

The sensitivity value S is provided with the calibration certificate of each probe and typically
falls in the range of 0.05–0.10 V m−2 s2.

The capacitor in the charge-transfer amplifier in instruments manufactured by RSI is usually
CI = 1.50 nF. The temperature coefficient of this capacitor is less than 1 × 10−4 ◦C−1. It is in-
tentionally chosen to equal the capacitor used in the calibrator. The voltage produced by the
charge-transfer amplifier in an instrument is

EI =
2
√
2ŜWu

CI
=

CC

CI
2
√
2SWu (6)

where the subscripts I and C refer to the instrument and the calibrator, respectively, and we
have used (5). Almost every instrument produced by RSI has CC/CI = 1.

An alternative method of capturing the output of the shear probe is to connect it to a very high-
impedance (≈100 GΩ) voltage buffer. The charge produced in response to the bending of the
beam produces a voltage because the probe has a capacitance of approximately 1 nF. The ca-
pacitance of the probes is temperature dependent. Thus, even if the charge produced per unit
of mechanical excitation were independent of temperature, the voltage produced by a probe will
still be temperature dependent. In addition, the lead capacitance must be accounted for in both
the calibrator and in the instrument. The lead capacitance adds to the probe capacitance and
reduces the output voltage. Most co-axial cables have a capacitance of 150 nF m−1. The output
voltage from the shear probe calibrator using a voltage buffer is

EC =
√
2SU2 sin(2α)

= 2
√
2S(U cosα)(U sinα)

= 2
√
2SWu

(7)

which is identical to (4) but the value of the sensitivity, S, derived from a regression (3) may
be different from that derived using a charge-transfer amplifier. The output from the voltage
amplifier in the calibrator is determined by the capacitance of the probe itself acting in parallel
with the capacitance of the cable connecting the probe to the voltage amplifier.
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3 SHEAR-PROBE CIRCUIT

3 Shear-Probe Circuit

Charge-Transfer
Amplifier

C I

Shear Probe
GD d/dt

GA

Low-Pass
Filter

A/D
Converter

EI

ES NS

Figure 2: A block diagram of the shear probe circuit in a typical instrument.

The analog (continuous-domain) signal chain for the shear probe is depicted in Figure 2. The
first stage is the charge-transfer amplifier that uses a capacitor, CI , that produces the signal EI

described in (6). The second stage is the differentiator that produces the signal GDdEI/dt. This
is followed by a frequency-independent gain GA, that is almost always equal to 1, to produce the
signal ES given by

ES =
CC

CI
2
√
2GDGASW

du
dt

=
CC

CI
2
√
2GDGASW

2 du
dz

= 2
√
2GDSW

2 du
dz

(8)

where I have taken the usual case of CC = CI and GA = 1, and W is the speed of profiling in
the direction z, with no particular geographic direction being implied by the symbol z. The next
stage is an anti-aliasing low-pass filter. The last stage is a data sampler that converts the voltage
ES into a signed integer NS given by

NS =
2B

VFS
ES =

2B

VFS
2
√
2GDSW

2 du
dz

(9)

where B is the number of bits of the sampler (usually B = 16) and VFS is the full-scale voltage
range of the converter (usually VFS = 4.096 V).

Conversion into physical units is simply a matter of using (9). The gain of the differentiator, GD,
is a characteristic of the circuit and is provided in the dynamic-calibration section of the report
for your instrument (Figure 3). This parameter and the others (B and VFS) that characterize
your instrument must be the configuration-file of your instrument. These parameters are stable
and do need need to be changed. The probe sensitivity, S, depends on the actual probe used, and
is provided in a separate calibration report. It too must be in the configuration-file, and it must
be updated whenever you change probes. A configuration-file containing the parameters for your
instrument are shipped with your instrument. However, the sensitivity parameter, S, is only a
nominal value.
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3 SHEAR-PROBE CIRCUIT4 FREQUENCY RESPONSE OF TEMPERATURE, SHEAR AND
PIEZO-ACCELEROMETER
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Figure 9: Transfer function of the shear probe circuits, relative to that of an ideal di↵er-
entiator. The charge-transfer amplifier responds only to AC signals and has its half-power
response at 0.1 Hz. The gains of the di↵erentiators are indicated in the upper panel and
represent the mean gain between the frequency limits indicated by the red triangles. Input
signal was 2Vpp. Upper panel: Gain with respect to frequency. Middle panel: Same but
with zoom-in view. Lower panel: phase with respect to frequency.

14

Figure 3: A typical dynamic calibration of the shear probe circuit to determine the gain of
the differentiator.

3.1 Wavenumber Response of Shear Probes

The shear probe has a finite size and consequently smoothes fluctuations with spatial scales com-
parable to, and smaller than, the size of the probe. This spatial averaging has been examined
by Macoun and Lueck [4] who recommend that the probes produced by RSI have their spectra
corrected by the factor

Φ(k) = 1 +

(
k

50

)2

(10)

where k is the wavenumber in units cycles per meter [cpm] and 50 cpm is the half-power wavenum-
ber response of the shear probe.

3.2 Water Density Effects

The bending force on the shear probe is proportional to the dynamic pressure over its surface,
ρU2. The shear probes are usually calibrated at room temperature (20 – 25 ◦C) in fresh water
which has a density of ρ = 997 – 998 kg m−3, and this density is 2 to 3 % smaller than the typical
density of seawater. Users may scale up the sensitivity, S, according to the in situ density.
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4 THERMISTOR FUNDAMENTALS

4 Thermistor Fundamentals

Thermistors are negative temperature-coefficient metal oxides. The blend of metal oxides de-
termines the resistance of a thermistor and its temperature-coefficient of resistance. Metal ox-
ides have a temperature-coefficient of resistance of about α̂ ≈ −0.04 ◦C−1, which is many tens
of times larger than the coefficient of metals, and this makes them suitable for detecting small
fluctuations of temperature. They can also be manufactured to very small dimensions, which al-
lows them to respond quickly to changes of temperature. The FP07 thermistor (Figure 4) has its
sensing element (the black dot at the tip) mounted into a glass substrate (the bulbous feature be-
hind the tip). The sensing tip of metal oxide has a diameter of 180 µm and is coated with glass
to a thickness of approximately 50 µm. The response time of the FP07 in water is about 7 ms at
speeds of 1 m s−1. The response time decreases with increasing speed. Neither the actual time
response, nor its dependence on speed, have been convincingly determined by the scientific com-
munity. A range of values, and response forms have been reported. [? ] provides the most recent
discussion. The metal-oxide bead of the FP07 thermistor is hand-placed and hand-fused to the
bulbous glass substrate. Therefore, the tip geometry varies among units and it is almost certain
that the response characteristics will also vary. There are no facilities for routinely calibrating
the frequency response of thermistors.

Figure 4: A photograph of the FP07 thermistor mounted into a sting by RSI.

The resistance of a thermistor follows approximately the Steinhart-Hart equation [5] which was
developed for semiconductors, even though metal-oxide is not a true semiconductor. In its sim-
plest form the Steinhart-Hart equation relates resistance to temperature using

RT

R0
= exp

(
β

[
1

T̂
− 1

T̂0

])
(11)

where RT is the resistance of the thermistor, T̂ is the absolute temperature (in units of kelvin),
R0 is the resistance at the temperature T̂0, and β is a “material constant” that depends on the
specific mixture of metal-oxides1. The FP07 thermistor provided by RSI has R0 ≈ 3000 Ω at

1Absolute temperature (expressed in units of Kelvin) is represented by a symbol with a hat (̂ ), while
temperature expressed in units of Celsius will be hatless. Therefore, T̂ = 273.15 + T
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4 THERMISTOR FUNDAMENTALS

17 ◦C. It is difficult and costly for the manufacturer to precisely control R0, and the typical un-
certainty of this value is ±25 %. The material constant β is controlled fairly precisely and usu-
ally varies by only ∼1 % within a production batch and only a little more between batches. The
range of the resistance ratio RT /R0 is approximately 0.5 to 2 for the range of temperature in the
ocean.

The thermistor is usually calibrated using

1

T̂
=

1

T̂0

+
1

β1
loge

(
RT

R0

)
+

1

β2
log2e

(
RT

R0

)
. (12)

The linear version of (12) is accurate to about ±0.05 ◦C over the oceanic temperature range,
while the second-order form is accurate to 0.005 ◦C (see appendix A). There is no justification
for using a higher order equation because the FP07 thermistor is unprotected from the pressure
of water and will compress with increasing depth and, thereby reduce its resistance [6]. For com-
parison, Sea-Bird calibrates their SBE-3F thermometers, which are pressure protected, using a
fourth-order version of (12).
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5 THERMISTOR CIRCUIT

5 Thermistor Circuit

5.1 Deriving the temperature using NT or NT_dT

Bridge Amplifier ET + G D dE T/dt

Low-Pass
Filter

A/D
Converter

ET

NT_dT

Thermistor

A/D
Converter

NT

E
T_dT

Figure 5: A block diagram of the thermistor circuit in a typical instrument.

A typical block diagram of the circuit supporting the FP07 thermistor is shown in Figure 5. The
thermistor, RT , is one arm of a four-arm Wheatstone bridge. The other three arms are resistors
of value R0 = 3000 Ω. The output, ET of the bridge amplifier is

ET =
1

2
GEB

(
1−RT /R0

1 +RT /R0

)
(13)

where G is the gain of the bridge amplifier (typically 6 ±0.1 %), and EB is the bridge excitation
voltage (typically 0.682 V). The precise values are given in the calibration report for your instru-
ment2 and these values are quite stable. The signal ET is also passed through a pre-emphasizer
to produce the signal

ET_dT = ET +GD dET /dt (14)

where GD is the gain of the time-derivative amplifier in the circuit. Typically, GD≈1 s (Figure 6).

Both the basic temperature signal, ET and the pre-emphasized signal, ET_dT , are sent to a data
sampler (analog-to-digital converter) to produce the signed integers,

NT =
2B

VFS
ET (15)

and
NT_dT =

2B

VFS
ET_DT (16)

where B is the number of bits of the sampler (usually B = 16) and VFS is the full-scale range of
the sampler (usually VFS = 4.096 V).

2Not the report for your thermistor.
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5 THERMISTOR CIRCUIT
4 FREQUENCY RESPONSE OF TEMPERATURE, SHEAR AND

PIEZO-ACCELEROMETER
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Figure 10: Transfer function of the pre-emphasized thermistor circuits, relative to that of
an ideal di↵erentiator. The gains of the di↵erentiators are indicated in the upper panel and
represent the mean gain between the frequency limits indicated by the red triangles. Input
signal was 2Vpp. Upper panel: Gain with respect to frequency. Middle panel: Same but
with zoom-in view. Lower panel: phase with respect to frequency.

15

Figure 6: A typical dynamic calibration of the thermistor circuit to determine the gain of the
differentiator, GD.

Analog electrical circuits are never perfect, so the entire amplification and sampling chain is cal-
ibrate using precision (0.01 %) resistors in place of the thermistor, RT . The output signals, NT

and NT_dT , are regressed against the expected outputs using

NT = a0 + b0

[
2B

VFS

1

2
GEB

(
1−RT /R0

1 +RT /R0

)]
= a0 + b0x (17)

and
NT_dT = a1 + b1

[
2B

VFS

1

2
GEB

(
1−RT /R0

1 +RT /R0

)]
= a1 + b1x (18)

where x is the term in square braces and equals the right-hand side of (15). x should also repre-
sent the right-hand side of (16) because dET /dt = 0 for a static calibration. The linear regression
coefficients ai and bi may be slightly different for the signal with pre-emphasis compared to the
one without pre-emphasis because they are independent analog channels. Ideally, ai = 0 and
bi = 1 and, typically, |ai| ≤ 15 and b is within 0.1 % of unity. The resultant fit of a0 + b0x to NT

is usually within ±0.5 counts (Figure 7). However, the fit of a1 + b1x to NT_dT is slightly poorer
because the pre-emphasis adds noise to this signal, and this makes the coefficients a1 and b1 less
reliable than their counterparts in (17).

To derive the actual thermistor resistance ratio, RT /R0, we use the inverse of (17), namely

RT

R0
=

1− Z

1 + Z
(19)

10



5 THERMISTOR CIRCUIT

where
Z =

NT − a0
b0

VFS

2B
2

GEB
. (20)

The computed resistance ratio can then be converted into physical units using (12).
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Figure 7: A typical static calibration of the electronics supporting an FP07 thermistor. N4 is
identical to NT discussed here.

The pre-emphasized signal, NT_dT , contains both the temperature and its time-derivative. It is
converted into a “temperature” signal by low-pass filtering it using a first-order filter with a cut-
off frequency of (2πGD)

−1. This filter removes the derivative portion of the signal and produces a
new signal, NT_hres, that has a resolution which about 100 times finer than the signal NT . This
is explained in Technical Note 002 and in [7].

The signals NT_hres and NT are nominally identical, except for statical fluctuations due to the
higher noise level of NT . However, they are also systematically different because they are derived
from independent signal paths, which is the reason that the pairs [a0 a1] and [b0 b1] are not iden-
tical in (17 and 18). Because the values of a0 and b0 are more reliable than their counterparts
for the pre-emphasized signal, we regress NT_hres against NT (to first order) so that we can use
the coefficients a0 and b0 to convert this high-resolution signal into temperature in physical units,
Thres, using (19 and 12).

Because the relationship between temperature, T , and the data samples, NT , is rather compli-
cated, it is frequently held that this relationship is highly non-linear. It is actually fairly close
to linear. For example, a first-order regression of temperature against NT is accurate to ∼± 1 K
over the oceanic range of temperature. The computational burden of deriving temperature using
(12) is not significant, if one is careful to call the log-function only once.

11



5 THERMISTOR CIRCUIT

5.2 Deriving the gradient of temperature

There are two methods for deriving the gradient of temperature in the direction of profiling. The
first method is achieved by taking the first difference of the high-resolution temperature Thres.
The second method is achieved by means of high-pass filtering the signal NT_dT and then con-
verting that into physical units. Both procedures produce the time rate-of-change of tempera-
ture, dT/dt. Dividing this by the speed of profiling produces the gradient of temperature in the
direction of profiling, for example ∂T/∂z = W−1dT/dt for the case of a vertical profiler, where
W is the magnitude of the vertical velocity of the profiler.

5.2.1 Temperature gradient by way of first-difference

The high-resolution temperature signal Thres has extremely low noise and this makes it possible
to estimate the time rate-of-change of temperature using a first-difference operation. Specifically,

dT
dt

=
Thres(n)− Thres(n− 1)

∆t
= fs (Thres(n)− Thres(n− 1)) (21)

where fs is the sampling rate and n is the index to the samples. However, this is only an approx-
imation of a time derivative because a derivative is a continuous-domain concept, whereas the
data, Thres, are samples and reside in the discrete domain. The z-transform [7] of the right-hand
side of (21) is

H(z) = fs
(
1− z−1

)
= fs z−1/2

(
z1/2 − z−1/2

)
= 2fN exp

(
−j

π

2

f

fN

)[
exp

(
j
π

2

f

fN

)
− exp

(
−j

π

2

f

fN

)]
= 4fN exp

(
j
π

2

[
1− f

fN

])
sin

(
π

2

f

fN

) (22)

where fN = fs/2 is the Nyquist frequency and the z-transform is evaluated on the unit circle z =
exp(jπf/fN ). For frequencies small compared to fN , the transfer function (22) reduces to 2πjf
which is identical to the transfer function of a continuous-domain time derivative. However, at
the Nyquist frequency, where z = −1, the discrete-domain approximation has a transfer function
of 4fN rather than 2πjfN – it is too small by a factor π/2 – and its phase is zero instead of π/2.
Spectra of the temperature gradient must be boosted by a factor of (2πf/|H|)2 to correct for the
estimation by way of first difference.

An additional, and more subtle, correction must be made to account for the difference between a
continuous-domain low-pass filter and its approximation in the discrete domain. The pre-emphasis
was applied in the continuous domain, but it is removed in the discrete domain. It is quite com-
mon to convert continuous-domain filters into discrete-domain equivalent filters using the bi-
linear transformation [7]. This is the default mapping used by Matlab. The bi-linear transforma-
tion maps the imaginary axis of the complex plain of the Laplace transform on to the unit circle
of the complex plain of the z-transform. Zero frequency of both domains are identical. However,
infinite frequency of the continuous domain is mapped to the Nyquist frequency of the discrete
domain. The transfer functions of the filters in the two domains are nearly identical for f . fN/3
but the transfer functions diverge sharply for higher frequency where a discrete-domain low-pass
filter attenuates a signal more strongly than its continuous domain equivalent filter. This is often
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5 THERMISTOR CIRCUIT

call “frequency warping”. The relative response of the two filters can be evaluated using the Mat-
lab function freqz, and a correction is applied to temperature gradient spectra by functions in
the ODAS Matlab Library for frequencies up to 0.9fN .

In summary;

• Use the procedures of section 5.1 to derive the absolute temperature T̂ , in units of kelvin,
or its equivalent in units of ◦C.

• Apply the first-difference operation of (21) to approximate dT/dt.

• Divide this signal by the speed of profiling to get the gradient of temperature, dT/dz, in
the direction of profiling, z. No particular direction is implied by the usage of z.

Spectra of temperature gradient must be corrected for the frequency dependence of a first-difference
operator (22), and for the low-pass filter used to derive the temperature T̂ (see discussion above).

5.2.2 Temperature gradient by way of high-pass filter

The pre-emphasized signal, NT_dT , contains both the temperature signal and its time derivative
(14 and 16) and, so, the derivative can be obtained by removing the temperature portion of this
signal. The continuous-domain transfer function of the pre-emphasis is

HT_dT (f) = 1 + 2πjGDf . (23)

Therefore, applying a first-order, high-pass filter with a cut-off frequency of (2πGD)
−1, namely

HHP (f) =
2πjGDf

1 + 2πjGDf
(24)

removes the temperature portion of the signal, NT_dT , and leaves only the derivative multiplied
by GD. That is, if we multiply (23) by (24), the result is 2πjGDf which is the frequency domain
representation of a time derivative operation multiplied by the factor GD. The filtering must be
done in the discrete domain. However, in this case, frequency warping is negligible because (i)
the cut-off frequency is very much smaller than the Nyquist frequency, fN ≫ (2πGD)

−1 and (ii)
the response (24) asymptotes to unity, making it independent of frequency, for f � (2πGD)

−1.

Let NdT denote the signal NT_dT after it is high-pass filtered and divided by GD. How can it be
converted into physical units? Using (13, 14, 16, and 18) we have

NdT =
b

2

2B

VFS
G EB

d
dt

(
1−RT /R0

1 +RT /R0

)
= η

d
dt

(
1−RT /R0

1 +RT /R0

)
= −η

1

1 +RT /R0

d
dt

(
RT

R0

)
− η

1−RT /R0

(1 +RT /R0)2
d
dt

(
RT

R0

)
= − 2η

(RT /R0 + 1)2
d
dt

(
RT

R0

)
(25)
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5 THERMISTOR CIRCUIT

where the scale coefficients have been lumped into η for simplicity, that is

η =
b

2

2B

VFS
G EB . (26)

The Steinhart-Hart equation (12) allows us to express the rate-of-change of temperature to the
rate-of-change of the thermistor resistance, namely

− 1

T̂ 2

dT
dt

=

(
β1

RT

R0

)−1 [
1 + 2

β1
β2

log
(
RT

R0

)]
d
dt

(
RT

R0

)
(27)

where T can be the temperature in ◦C or K. The second term in the square braces is small be-
cause β1/β2∼0.01 and the logarithm of the resistance ratio is in the range of ±1. Using (25) we
have

dT
dt

=
1

2

T̂ 2

ηβ1

(RT /R0 + 1)2

RT /R0

[
1 + 2

β1
β2

log
(
RT

R0

)]
NdT . (28)

The product of all of the variables that multiply NdT on the right-hand side of (28) is nearly con-
stant. The contents of the square braces is very close to 1. The factor involving the resistance
ratio varies from 4 to 4.5. The square of the absolute temperature varies by one-eighth around
2902. Thus, using typical values

dT
dt

≈ 1.7 × 10−3 NdT . (29)

In summary;

• Use the procedures of section 5.1 to derive the absolute temperature T̂ .

• High-pass filter the raw pre-emphasized signal, NT_dT , using a first-order filter with a cut-
off frequency of (2πGD)

−1, in units of Hz.

• Divide this signal by GD to produce the signal NdT .

• Gather the thermistor coefficients, T̂0, β1, and β2 that were derived from its calibration. If
you do not have β2 set it to infinity.

• Gather the circuit coefficients that comprise η, (26).

• Apply (28) to compute the rate-of-change of temperature, dT/dt.

• Divide this signal by the speed of profiling to get the gradient of temperature, dT/dz, in
the direction of profiling, z. No particular direction is implied by the usage of z.

Finally and most importantly, no correction needs to be applied when using this high-pass filter
method to determine the gradient of temperature.
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5 THERMISTOR CIRCUIT

5.3 Comparing first-difference and high-pass methods

A profile taken off the coast of Chile in 2012, with a VMP-250, has significant temperature gradi-
ent microstructure (Figure 8) which makes it suitable for comparing the two methods of calculat-
ing the gradient of temperature. The time series for the pressure (depth) range of 92 to 163 dbar
(Figure 9) has gradients exceeding 2 K m−1. However, the difference between the two methods is
small and the trace derived using the method of first-difference completely covers the trace de-
rived using the high-pass method. The data were sampled at a rate of 512 s−1.
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Figure 8: A profile of temperature (left) and its gradient (right) taken off the coast of Chile
with a VMP-250 vertical profiler.
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Figure 9: The time series of temperature gradient for the depth range of 92 to 163 dbar. The
labels HP and FD identify the methods of high-pass and first-difference, respectively.

The difference between the two methods is apparent in the spectra of the two signals (Figure 10).
The spectra are nearly indistinguishable for frequency up to ∼50 Hz, above which the spectrum
derived by the first difference method (red line) systematically falls below the spectrum derived
by the high-pass method. Beyond 150 Hz (∼60 % of the Nyquist frequency) the spectrum for the
signal derived by the first-difference technique decreases rapidly towards zero with increasing fre-
quency, due to frequency warping. However, the spectrum of the signal derived by the high-pass
method levels off to the sampling noise of the original pre-emphasized signal. In this case, about
5 × 10−9 K2 m−2 Hz−1. More than 90 % of the variance of the two signals resides at frequencies
lower than 50 Hz and, consequently, there is little visual difference between the time traces of the
two signals.

15



5 THERMISTOR CIRCUIT
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Figure 10: The spectra of the temperature gradient derived using the high-pass (blue) and
first-difference (red) methods.

A more quantitative way of comparing the two methods is to plot the ratio of the two spectra
(Figure 11). They differ by 10 % at 55 Hz and by a factor of 2 at 127 Hz.
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Figure 11: The ratio of the temperature gradient spectrum derived using the first-difference
method to the spectrum derived using the high-pass method.
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6 MICRO-CONDUCTIVITY FUNDAMENTALS

6 Micro-conductivity Fundamentals

A conductivity sensor and its electronics can measure only the conductance of the fluid surround-
ing its electrodes. It cannot measure the conductivity of the fluid directly. This is a material-
specific property. The micro-conductivity sensor used by RSI is manufactured by Sea-Bird Inc.
to the specifications of RSI (Figure 12). Its two electrodes are on the ends of “needles’, and have
the shape of a disk with a diameter of ∼1 mm. The centres of the electrodes are separated by
∼1.5 mm. The electronics applies an AC-voltage across the electrodes and measures the resultant
current. The ratio of current-to-voltage is a measure of the conductance of the portion of the
fluid that provides an electrical path between the electrodes. This conductance is proportional
to the fluid conductivity, but its value depends also on the geometry, orientation, separation and
dimensions of the electrodes. It is usual to assign all these factors to a single “cell-constant”, K,
so that the measured conductance is

Y = KC (30)

where Y is the conductance (in units of siemens), C is the fluid conductivity (in units of siemens/m),
and K is the cell constant (in units of m). Only for very simple geometries is it possible to de-
rive the cell constant analytically because the current path between the electrodes is usually very
complicated. It is often falsely assume that the cell constant is actually constant for a given sen-
sor. However, this is never completely true. Aside from the obvious change of the cell constant
resulting from bending the needles that hold the electrodes (Figure 12), the cell constant may
change due to thermal expansion and pressure induced contraction.

Figure 12: A photograph of the SBE7 micro-conductivity sensor mounted into a sting for
RSI.

The surface of the electrodes of the sensor supplied by RSI is coated with platinum black, which
is a soft and sponge-like coating that increases the surface area in contact with the fluid. Me-
chanical abrasion of the platinum-black coating will change the conductance measured by the
sensor. Similarly, the measured conductance will change if material adheres to the electrode sur-
face, such as silt or gelatinous biological films. The sensor must, therefore, be cleaned after use
and, if possible, pre-wetted. If you have some knowledge of the expected conductivity (say, from
a CTD) and if the conductivity reported by the micro-conductivity sensor differs significantly
from the known (or expected) value, then the data might be salvaged by adjusting the value of
the cell constant that is used to convert your data into physical units (which is discussed next).
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7 MICRO-CONDUCTIVITY CIRCUIT

7 Micro-conductivity Circuit

The micro-conductivity board applies a sinusoidal voltage difference between the electrodes of a
conductivity cell. The waveform has a very stable amplitude of approximately 0.2 V and a fre-
quency of f0 = 7812.50 Hz. The current through the electrodes is converted into a voltage and
synchronously rectified3. The resultant signal consists of a mean that is proportional to the am-
plitude of the electrode current plus the fundamental frequency, f0, and its harmonics. It looks
like a periodic repetition of sin θ for 0 < θ ≤ π. This signal is then sharply low-pass filtered at
1000 Hz to remove all harmonics and leave only the amplitude portion of the signal. This filtered
signal then splits into two paths. In the first path, it is pre-emphasized by adding a fraction of
its time-rate-of change, after which it is anti-alias filtered (usually at 100 Hz) to produce the sig-
nal EC_dC . It is then sampled to produce NC_dC . The second path, does not have pre-emphasis
and goes directly to an anti-alias filter to create the signal EC which is sampled to produce NC .
Some boards do not have this second path.

7.1 Deriving the conductivity using NC_dC and NC

The electronics board supporting the micro-conductivity sensor is quite linear with respect to
conductance (Figure 13). The static response of the board is calibrated by substituting precision
(0.01 %) resistors in place of a real sensor. Readings of the measured output are then regressed
against the applied conductance to derive the offset- and slope-coefficients of a and b, respec-
tively. The units of a and b are V and V S−1, respectively. 3 STATIC RESPONSE
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Figure 2: The linear regression of the digital output of the conductivity signal with respect to
the conductance of a probe. The linear least-squares fit gives the o↵set, a, and the slope, b.

the conversion into physical units is the same as listed above, except that you will have to
determine how that instrument converts a voltage, V

x

into a digital number X. Also, note
that the coe�cients a and b are significantly di↵erent for the analog output compared to
the digital output. The analog output is unipolar and ranges from 0 to 5V, and the slope is
negative. That is, increasing conductivity produces a decreasing voltage.

5

Figure 13: The static calibration of a micro-conductivity circuit. Upper trace; the circuit
output voltage with respect to applied conductance. Lower panel; the deviation of the least-
squares fit, based on the coefficients shown in the title.

3Synchronous rectification is mathematically described by taking a sine wave and multiplying it by a
square wave with an amplitude of 1 and a frequency and phase identical to that of the sine wave, namely
sign(sin(2πf0t)) sin(2πf0t).
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7 MICRO-CONDUCTIVITY CIRCUIT

The board calibration coefficients are used to convert the raw data into physical units of conduc-
tance, and these coefficients are time and temperature stable. The coefficients must be entered
into your configuration-file, and this is usually done at RSI before shipping your instrument. The
cell constant, K, of a micro-conductivity sensor is determined separately by immersing the sensor
in a fluid of known conductivity. This constant is probe specific and must also be entered into
the configuration-file for your instrument, and it must be updated whenever you change the sen-
sor.

The output voltage of the circuit is pre-emphasized by adding a scaled time-derivative of the sig-
nal itself. It is then anti-alias filtered and sampled to produce the raw data

NC_dC =
2B

VFS
EC_dC =

2B

VFS

(
EC +GD

dEC

dt

)
(31)

where B is the number of bits in the sampler, VFS is the full-scale voltage range of the sampler,
and GD is the gain of the differentiator used to pre-emphasize the voltage signal EC , given by

EC = a+ bY (32)

and Y is now the conductance of the fluid.

The pre-emphasized and sampled signal NC_dC contains both the conductance signal and its
rate-of-change. It is converted into a high-resolution conductance signal, NChres

, by passing it
through a first-order low-pass Butterworth filter with a cut-off frequency of (2πGD)

−1. This is
explained in Technical Note 002 and in [7]. On some instruments the signal EC is also sampled
to produce the data NC , but it will be a much lower resolution version of the one derived by low-
pass filtering. Its main purpose is to confirm the accuracy of the low-pass filter operation.

Converting NChres
into physical units is a matter of using (30—32) to derive the conductance of

the fluid between the electrodes

Y =
1

b

(
VFS

2B
NChres

− a

)
(33)

from which the fluid conductivity is obtained using

Chres =
Y

K
=

1

b

(
VFS

2B
NChres

− a

)
1

K
. (34)

This conductivity is in units of S m−1 and is converted to units of mS cm−1 by multiplying it by
a factor of 10. If your instrument does provide the data NC (which are the samples of EC), then
you can use (34) to convert these data into physical units. The values of a and b might differ
slightly from the ones used for the high-resolution conductivity.

7.2 Deriving the gradient of conductivity

There are two methods for deriving the gradient of conductivity in the direction of profiling. The
first method is achieved by taking the first difference of the high-resolution conductivity Chres.
The second method is achieved by means of high-pass filtering the signal NC_dC and then con-
verting that into physical units. Both methods produce the time rate-of-change of conductivity,
dC/dt. Dividing this by the speed of profiling produces the gradient of conductivity in the direc-
tion of profiling, for example ∂C/∂z = W−1dC/dt for the case of a vertical profiler, where W is
the magnitude of the vertical velocity of the profiler.
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7 MICRO-CONDUCTIVITY CIRCUIT

7.2.1 Conductivity gradient by way of first-difference

The high-resolution conductivity signal Chres has extremely low noise and this makes it possible
to estimate the time rate-of-change of conductivity using a first-difference operation. Specifically,

dC
dt

=
Chres(n)− Chres(n− 1)

∆t
= fs (Chres(n)− Chres(n− 1)) (35)

where fs is the sampling rate and n is the index to the samples. However, this is only an approx-
imation of a time derivative because a derivative is a continuous-domain concept, whereas the
data, Chres, are samples and reside in the discrete domain. The implications of a first-difference
operation are discussed in section 5.2.1 and will not be repeated here.

7.2.2 Conductivity gradient by way of high-pass filter

The pre-emphasized signal, NC_dC , contains both the conductivity signal, EC , and its time deriva-
tive (32 and 31). The derivative portion is obtained by removing the conductivity portion. The
continuous-domain transfer function of the pre-emphasis is

HC_dC(f) = 1 + 2πjGDf . (36)

Therefore, applying a first-order, high-pass filter with a cut-off frequency of (2πGD)
−1, namely

HHP (f) =
2πjGDf

1 + 2πjGDf
(37)

removes the conductivity portion of the signal, EC , leaving only the derivative multiplied by GD.
That is, if we multiply (36) by (37), the result is 2πjGDf which is the frequency-domain repre-
sentation of a time derivative operation multiplied by the factor GD.

Let NdC denote the signal NC_dC after it is high-pass filtered and divided by GD. Using (30, 31,
and 32), this signal is

NdC =
2B

VFS

dEC

dt
=

2B

VFS
b

dY
dt

=
2B

VFS
bK

dC
dt

. (38)

Therefore, the rate-of-change of fluid conductivity is derived using

dC
dt

=
VFS

2B
1

bK
NdC (39)

where, to summarize, B is the number of bits of the sampler, VFS is the full-scale voltage range
of the sampler, b is the calibrated slope coefficient of the electronics, and K is the cell-constant
of the conductivity sensor. Dividing the rate-of-change of conductivity by the speed of profiling
gives the gradient of conductivity in the direction of profiling.
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A A TYPICAL FP07 CALIBRATION REPORT

A A typical FP07 calibration report

Rockland Scientific International Inc.
520 Dupplin Road, Victoria, BC. V8Z 1C1
Phone: (250) 370-1688 Fax: (250) 370-0234

FP–07 Temperature Probe Calibration Report

Probe SN: T944
Date: 2014-08-28

Room Temp: 22.5 �C
Operator: Shiro Yasuda

SBT1: SN031509
SBT2: SN031568

Probe Channel: 4

Linear Model:

1

T̂
=

1

T̂0

+
1

�
loge

✓
RT

R0

◆

� = 2998.36K
T0 = 280.260K

Second-order Model:

1

T̂
=

1

T̂0

+
1

�1
loge

✓
RT

R0

◆
+

1

�2

✓
loge

✓
RT

R0

◆◆2

�2 = 256 353.27K
�1 = 2976.47K
T0 = 280.265K

[T̂ ] ⌘ K, T ⌘ T̂ � 273.15 [�C]

SBT1 SN031509 SBT2 SN031568 Probe T944
(�C) (�C) (counts)

1.327 1.326 -3651.9
1.348 1.348 -3637.6
5.459 5.457 -1045.5
5.481 5.480 -1031.4
5.514 5.512 -1011.2
10.411 10.409 2002.4
10.424 10.423 2010.1
10.448 10.447 2025.1
15.378 15.376 4932.5
15.388 15.386 4938.9
15.416 15.415 4955.3
20.400 20.398 7733.2
20.412 20.410 7740.4
20.441 20.440 7756.7
25.578 25.576 10417.2
25.585 25.584 10421.9
25.606 25.604 10431.1
30.219 30.218 12634.9
30.226 30.224 12636.1
30.245 30.244 12646.4

1

Figure 14: FP07 thermistor calibration report – page 1
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Figure 1: Linear Steinhart-Stein model. Upper panel; Predicted temperature versus measured temperature.
Lower panel; Di↵erence between the predicted and the measured temperature versus measured temperature.
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Figure 2: Second-order Steinhart-Stein model. Upper panel; Predicted temperature versus measured tem-
perature. Lower panel; Di↵erence between the predicted and the measured temperature versus measured
temperature.

2

Figure 15: FP07 thermistor calibration report – page 2
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B A typical micro-conductivity calibration report

Rockland Scientific International Inc.
520 Dupplin Road, Victoria, BC. V8Z 1C1
Phone: (250) 370-1688 Fax: (250) 370-0234

SBE7 MicroConductivity Probe Calibration Report

Probe SN: C215
Date: 2016-07-08

Room Temp: 22.1 �C
Operator: Shiro Yasuda

SBC1: SN3136
SBC2: SN1012

µC-LP P059R00: SN001
Probe Channel: 2

Cell Constant:

K = 0.001 12m
K 0 = 0.001 12m

SBC1 SN3136 SBC2 SN1012 Probe C215
(mS cm�1) (mS cm�1) (counts)

0.000 0.000 -7553.2
0.053 0.052 -7543.1
20.705 20.697 -3170.6
31.795 31.790 -892.2
37.604 37.598 285.0

Y
 [

S
]

×10-3

-5

0

5

µC-probe Calibration, SN = C215, 2016-07-08

K  = 1.12 × 10-3 m, LSQ Slope Fit

K ′  = 1.12 × 10-3 m, Proportional Fit
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Figure 1: Upper panel; Probe conductance versus fluid conductivity. Lower panel; Di↵erence between fitted
and actual contuctivity using LSQ slope fit (blue) and proportional fit (green) versus fluid conductivity.

Figure 16: A micro-conductivity sensor calibration report.
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