

RSI Technical Note 048

Interpreting the Results of Calibrate All

Evan Cervelli Rolf Lueck 2019-05-27

Rockland Scientific International Inc. 520 Dupplin Rd Victoria, BC, CANADA, V8Z 1C1 www.rocklandscientific.com

Contents

1	Intr	oduction	2
	1.1	Issuing the Calibrate All command	2
		1.1.1 ODAS5IR Internally Recording	2
		1.1.2 ODAS-RT Real Time	2
	1.2	Variation in the Results	2
	1.3	Channel Reference	3
2	Inte	erpreting Results from Calibrate All	4
	2.1	Calibrate All with Test Probes	5
	2.2	Calibrate all from a Glider at Sea	6
	2.3	Mid-profile Verbose Output Statistics	7
3	Exa	mples of Calibrate All Results	7
	3.1	On Deck Before Deployment:	8
	3.2	On the surface a few days after deployment:	9
	3.3	On the surface after damage to all four microstructure probes:	10
	3.4	MicroRider with EM Sensor in Lab, Test Probes Installed	11
	3.5	Unshielded MicroCTD in Lab, Test Probes Installed	12
	3.6	Shielded MicroCTD in Lab, Test Probes Installed	13

1 Introduction

The Calibrate All function is a tool embedded in the Data Acquisition Software found on Rockland Scientific instrumentation for both internally recording and real-time instruments. The Calibrate All function can be used to assess the health of an instrument's electronics and, in some cases, the microstructure probes installed in the instrument. The Calibrate All function does Not calibrate the instrument or sensors, it is named as such because it is used by Rockland Scientific during the calibration of the instrument electronics at the time of production. This document provides a guide to interpreting the results of the Calibrate All function for common instrument channels found on standard Rockland Instruments; channels associated with uncommon and custom sensors are not discussed in this document.

1.1 Issuing the Calibrate All command

1.1.1 ODAS5IR Internally Recording

Once you have connected to the instrument via Motocross software type the following:

odas5ir -c all

For more information on ODAS5IR software and Instrument communication please refer to the ODAS5-IR User Guide.

1.1.2 ODAS-RT Real Time

Once you have connected to the real time instrument via ODAS-RT software, navigate to the 'calibrate' tab. Press the 'calibrate' button.

For more information on ODAS-RT software and Instrument communication please refer to the ODAS-RT User Guide.

1.2 Variation in the Results

It is important to understand that Rockland Scientific electronics and sensors are extremely sensitive. The results of the Calibrate All test (as well as standard Electronics Bench Tests) may vary due to local electromagnetic radiation and mechanical vibrations. Electromagnetic radiation sources include, but are not limited to, AC electrical systems, lighting, televisions etc. See the instrument manual for recommendations for shielding your instrument from electromagnetic radiation. Mechanical vibrations may occur from collegues walking down the hall outside the room, fans, appliances etc. See instrument manual for recommendations for mechanically isolating your instrument. Table 2 lists expected results from tests performed in a laboratory with minimal sources of electromagnetic radiation and mechanical vibrations. It is important to consider the local conditions when performing the Calibrate All Test. Results from the Calibrate All test performed on a MicroRider on a glider on the surface during a deployment at sea may vary depending on the local sea state.

It is important to remember that the expected values discussed in this document are for reference only. Values may vary due to multiple factors.

1.3 Channel Reference

Table 1 lists the channels that may appear on a Rockland Instrumentation. Please note that some channels will only appear on specific Rockland Instrumentation; for a list of channels specific to your instrument check the instrument setup.cfg file. More information available in the ODAS5IR User Guide and Instrument Manuals.

ID	Name	Signal
0	gnd	pseudo-ground
1	Ax	piezo-accelerometer sensitive to x axis
2	Ay	piezo-accelerometer sensitive to y axis
4	T1	Thermistor 1
5	$T1_dT1$	Thermistor 1 with pre-emphasis
6	T2	Thermistor 2
7	$T2_dT2$	Thermistor 2 with pre-emphasis
8	sh1	Shear Probe 1
9	sh2	Shear Probe 2
10	Р	Pressure
11	P_dP	Pressure with pre-emphasis
12	\mathbf{PV}	Voltage on pressure transducer
15	EMC_Cur	EMC drive current reference signal for EM noise removal
32	V_bat	Power Supply Voltage divided by 10
40	Incl_Y	y-inclinometer (pitch)
41	Incl_X	x-inclinometer (roll)
42	Incl_T	Inclinometer temperature
48, 49	JAC_C	JAC conductivity sensor (two channels, voltage and current)
50	JAC_T	JAC thermometer
52	Chlorophyll	JAC fluorometer
53	Turbidity	JAC backscatter sensor
64	\mathbf{C}	Micro Conductivity
65	C_dC	Micro Conductivity with pre-emphasis
144	U_EM	JAC Electromagnetic Velocity Digital output
255	Sp_char	Special Character, 7FF0H

 Table 1: Channel Reference

2 Interpreting Results from Calibrate All

The values displayed in the Calibrate All results are measured in raw counts. Rockland equipment uses a 16 bit system therefore the range of possible raw counts is limited to ±32768 counts. Raw counts can be converted to physical units using the function convert_odas available in the ODAS MatLab Library, or manually using the equations listed in the ODAS MatLab Library. This is very useful for T1, T1_dT1, T1, T2_dT2, P, P_dP, S1, S2, C1, C1_dC1, V_Bat, Incl_X, Incl_Y, Incl_T.

There are two common conditions when interprtation of the Calibrate All test is useful. The first case is when the instrument is in the laboratory with test probes installed; the results of this test will provide insight into the health of the instrument electronics. Table 2 provides a description of expected results from each channel when the instrument is on the bench with test probes installed.

The second case is when a Rockland instrument such as a MicroRider is deployed at sea on a platform such as a glider. Some glider systems allow for direct communication with the MicroRider while the glider is at the surface. In this scenario the results can provide insight into the health of the instrument electronics and the microstructure probes installed in the instrument. Table 3 provides a description of expected results from each channel when the instrument is deployed at sea, integrated into a glider system.

2.1 Calibrate All with Test Probes

ID	Name	Expected Signal
0	gnd	Expect min and max values between 0 and ± 10 counts. Expect mean ± 10 counts,
		stdev < +1.
1	Ax	Values will reflect local vibrations. Ax values are expected to be larger than Ay.
2	Ay	Values will reflect local vibrations. Ay values are expected to be smaller than Ax.
4	T1	Expect min, max and mean $< \pm 500$ counts; stdev $< +1$. High counts may indicate
		corrosion on SMC cable.
5	T1_dT1	Expect min, max and mean $< \pm 500$ counts and stdev $< +10$. Stdev will always be
		higher than T1.
6	Τ2	Expect min, max and mean to be $< \pm 500$ counts and stdev $< +1$.
7	$T2_dT2$	Expect min, max and mean to be $< \pm 500$ counts and stdev $< +10$. Stdev will always
		be higher than T2.
8	Sh1	Expect min, max and mean to be $< \pm 10$ counts and stdev $< +5$ counts. Higher counts
		may indicate corrosion on SMC Cables. Expect higher counts when unshielded.
9	Sh2	Expect min, max and mean to be $< \pm 10$ counts and stdev $< +5$ counts. Higher counts
		may indicate corrosion on SMC Cables. Expect higher counts when unshielded.
10	Р	Expect min, max and mean to be $< \pm 250$ counts and stdev $< +1$ counts. Very high
		counts may indicate broken pressure sensor.
11	P_dP	Expect min, max and mean to be $< \pm 500$ counts and stdev $< +5$ counts. Stdev will
		always be higher than P.
12	PV	Expect min, max and mean to be $< \pm 2000$ counts and stdev $< +100$ counts.
15	EMC_Cur	Expect min, max and mean to be $< \pm 15000$ counts and stdev $< +10000$ counts.
32	V_Bat	Expected stdev $< +10$ counts (For min, max and mean: $+16000$ counts $= 10$ V,
		+26000 counts = 16.25 V, see equation in ODAS MatLab Library User Guide.)
40	Incl_X	Counts proportional to the inclination around the x axis, expect stdev $< +1$, higher if
		instrument is moving. 1 degree equals 40 counts.
41	Incl_Y	Counts proportional to the inclination around the y axis, expect stdev $< +1$, higher if
		instrument is moving. 1 degree equals 40 counts.
42	Incl_T	Counts proportional to the temperature insided the instrument, expect stdev $< +1$
48	JAC_C	Counts are irrelevant in air. JAC-C voltage, expect min, max and mean to be $<$
		+28000 counts and stdev $< +10$ counts in air.
49	JAC_C	Counts are irrelevant in air. JAC Current, expect min, max and mean to be $< +25$
		counts and stdev $< +1$ counts in air.
50	JAC_T	Counts proportional to the air temperature, expect min, max and mean to be $<$
		+32768 counts
52	Chlorophyll	Expect min, max and mean to be $< +1500$ counts and stdev $< +20$ counts. May
		change if objects are near sensor, displays DATA FIFO EMPTY if sensor is covered
53	Turbidity	Expect min, max and mean to be $< +7000$ counts and stdev $< +20$ counts. May
		change if objects are near sensor, displays DATA FIFO EMPTY if sensor is covered
64	C1	Expect min, max and mean to be > -7000 counts and stdev $< +1$ counts.
65	C1_dC1	Expect min, max and mean to be > -7000 counts and stdev $< +25$ counts. Stdev will
		always be higher than C1.
144	U_EM	Expect min, max and mean to be $< +3000$ counts and stdev $< +250$ counts in air.
255	Sp_char	Special Character, 7FF0H, expect min, max and mean to ALWAYS be $+32752$ counts
		and stdev $= 0$ counts.

Table 2: Expected Calibrate All Results with Test Probes

2.2 Calibrate all from a Glider at Sea

ID	Name	Expected Signal
0	gnd	Expect min and max values between 0 and ± 10 counts. Expect mean ± 10 counts,
		stdev < +1.
1	Ax	Values will reflect local vibrations. Expect larger numbers up to 32768 as surface con-
		ditions get worse (waves) or if glider is running pump etc. Ax values are expected to
		be larger than Ay.
2	Ay	Values will reflect local vibrations. Expect larger numbers up to 32768 as surface con-
		ditions get worse (waves) or if glider is running pump etc. Ay values are expected to be
		smaller than Ax.
4	T1	Monitor for change. $+/-10000$ count range for oceanographic conditions (aprox -2C to
		+38C) . The signal is 500 counts per C. The values increase with increasing tempera-
		ture. A large departure from expectations suggests a crack in the glass coating, a leak
		into the probe, or (heavens forbid) that water is in the nose cone. A systematic shift
		with time indicates the same possible phenomena.
5	$T1_dT1$	The standard deviation of the thermistor channel with pre-emphasis gives you corrob-
		oration of any failure symptoms displayed by the T1 channel. It indicates the inten-
		sity of the fluctuations. This statistic is a bit harder to interpret, but basically a wide
		range on the thermistor channel with pre-emphasis is a bad sign. A wide range is more
		than 5000 counts, and indicates that there is one of the three possible failures listed
		above.
6	T2	Same as T1.
7	T2_dT2	Same as T1_dT1
8	Sh1	Velocity derivative from shear probe 1. Difficult to interpret when on surface. Very
		large numbers near 32768 are not a good sign, but could simply be from high seas.
		Need to check MicroRider Proglet Verbose Output from mid-profile to assess shear
		probe health: For the shear probes, the mean is of little value because the expectation
		is zero. Even a completely broken shear probe will have a mean of near zero. Only the standard deviation is useful. A broken probe will have a large standard devia-
		tion, more than 1000 counts. You will also get a large standard deviation if you have
		snagged seaweed, jelly fish, or hit zooplankton, also if you are bouncing around on a
		rough sea surface, but these will be transient. Persistently high values are a bad sign.
9	Sh2	Same as Sh1
$\frac{9}{10}$	P	Expect min, max and mean to be $< \pm 250$ counts and stdev $< +1$ counts. Very high
10	T	Expect min, max and mean to be $< \pm 250$ counts and stdev $< \pm 1$ counts. Very mgn counts may indicate broken pressure sensor.
11	P dP	Expect min, max and mean to be $< \pm 500$ counts and stdev $< +5$ counts. Stdev will
11	1 _u1	Expect min, max and mean to be $< \pm 500$ counts and side $< \pm 5$ counts. Side will always be higher than P.
12	PV	Expect min, max and mean to be $< \pm 2000$ counts and stdev $< +100$ counts.
$\frac{12}{15}$	EMC_Cur	Expect min, max and mean to be $< \pm 2000$ counts and stdev $< \pm 1000$ counts.
$\frac{10}{32}$	V Bat	Expected stdev $< +10$ counts (For min, max and mean: $+16000$ counts $= 10$ V,
J2	v_Dat	Expected state $\langle +10 \text{ counts} (\text{ror min, max and mean: }+10000 \text{ counts} = 10 \text{ V},$ +26000 counts = 16.25 V, see equation in ODAS MatLab Library User Guide.)
40	Incl X	Counts proportional to the inclination around the x axis, expect stdev $< +1$, higher if
40	$\Pi \Box \Lambda$	counts proportional to the inclination around the x axis, expect state $\langle +1$, higher in instrument is moving. 1 degree equals 40 counts.
41	Incl Y	Counts proportional to the inclination around the y axis, expect stdev $< +1$, higher if
41	IIICI_I	
42	Incl T	instrument is moving. 1 degree equals 40 counts. Counts proportional to the temperature insided the instrument, expect stdev $< +1$.
$\frac{42}{144}$	U_EM	Expect min, max and mean to be $< +3000$ counts and stdev $< +250$ counts in air.
$\frac{144}{255}$	Sp_char	Expect min, max and mean to be $< \pm 5000$ counts and stdev $< \pm 250$ counts in an. Special Character, 7FF0H, expect min, max and mean to ALWAYS be ± 32752 counts
200	op_mai	special Character, <i>TFF</i> off, expect finit, max and mean to ALWATS be $+32732$ counts and stdev = 0 counts.

Table 3: Expected Calibrate All Results from a Glider at Sea

2.3 Mid-profile Verbose Output Statistics

On some glider systems the verbose output from the mircorider can be recorded by the glider and sent back to land. The verbose output includes mid-profile mean (record average) and the 'pseudo-standard deviation' (mean absolute deviation) from the microstructure probes. Pseudo-standard deviation can be interpreted similarly to standard deviation. Pseudo-standard deviation is used because it is easer to compute, but is typically 10% smaller in value than standard deviation. Channel statistics from mid-profile are better for assessing probe health than when the probes are on the surface. The health of shear probes can only truly be assessed from mid-profile channel statistics. Below is a discussion of interpreting mean and pseudo-standard deviation from mid-profile probe statistics. For more information see Technical Note 044.

What can one tell about the sensors from a record average and a record pseudo standard deviation?

For the FP07 thermistors, the record average can be converted into physical units and this should give a reasonable estimate of the temperature, which you can compare to your expectations for the environment. Basically, the average thermistor output is in the +/-10000 count range for oceanographic conditions. The signal is aproximately 500 counts per degree Celcius. The raw count values increase with increasing temperature. A large departure from expectations suggests a crack in the glass coating, a leak into the probe, or (heavens forbid) that water is in the nose cone. A systematic shift with time indicates the same possible phenomena.

The standard deviation of the thermistor channel with pre-emphasis gives you corroboration of any failure symptoms displayed by the record average values. It indicates the intensity of the fluctuations. This statistic is a bit harder to interpret, but basically a wide range on the thermistor channel with pre-emphasis is a bad sign. A wide range is more than 5000 counts, and indicates that there is one of the three possible failures listed above.

For the shear probes, the record average is of little value because the expectation is zero. Even a completely broken shear probe will have a record average of near zero. Thus, only the standard deviation is useful. A broken probe will have a large standard deviation, more than 1000 counts. You will also get a large standard deviation if you have snagged seaweed, jelly fish, or hit zooplankton, also if you are bouncing around on a rough sea surface, but these will be transient. Persistently high values are a bad sign.

3 Examples of Calibrate All Results

Below are examples of calibrate all results from a glider on deck with probes installed, a glider on the surface with probes installed, a glider on the surface after suffering damage to all four microstructure probes. Full discussion of how to interpret the calibrate all statistics are not included in this document. Glider MicroRider users are welcome to request further interpretation by Rockland staff by sending results to support@rocklandscientific.com

3.1 On Deck Before Deployment:

All channels are reporting healthy results given the local conditions. Real probes are installed. Note that the shear (ch 8, ch 9) and temperature probe (ch 4-7) channels have low min and max values.

ch:	0	min:	+0	max:	+2	mean:	+0.8	stdev:	0.43
ch:	1	min:	-4529	max:	+4255	mean:	-11.6	stdev:	1824.11
ch:	2	min:	-2862	max:	+2525	mean:	-6.4	stdev:	968.94
ch:	4	min:	+1733	max:	+1816	mean:	+1784.1	stdev:	23.78
ch:	5	min:	+1773	max:	+1984	mean:	+1891.0	stdev:	54.75
ch:	6	min:	+3577	max:	+3624	mean:	+3606.9	stdev:	14.56
ch:	7	min:	+3359	max:	+3789	mean:	+3622.7	stdev:	87.35
ch:	8	min:	-747	max:	+733	mean:	-3.5	stdev:	297.96
ch:	9	min:	-1432	max:	+1436	mean:	-2.7	stdev:	533.39
ch:	10	min:	-59	max:	-56	mean:	-57.1	stdev:	0.40
ch:	11	min:	-59	max:	-53	mean:	-56.8	stdev:	1.27
ch:	12	min:	-1755	max:	-1754	mean:	-1754.7	stdev:	0.44
ch:	32	min:	+17199	max:	+17546	mean:	+17466.8	stdev:	90.65
ch:	40	min:	-32768	max:	-16385	mean:	-27934.8	stdev:	7476.71
ch:	41	min:	-16509	max:	-16494	mean:	-16502.6	stdev:	4.23
ch:	42	min:	-31463	max:	-31462	mean:	-31462.9	stdev:	0.27
ch:	255	min:	+32752	max:	+32752	mean:	+32752.0	stdev:	0.00

3.2 On the surface a few days after deployment:

Shear channel min and max are higher due to local surface condition. Remember that shear probes are vibration sensors and can reach very high raw counts in rough surface conditions. It is not possible to fully assess health of shear probe channels when the glider is on the surface.

ch:	0	min:	+0	max:	+2	mean:	+0.7	stdev:	0.45
ch:	1	min:	-7477	max:	+7291	mean:	-219.0	stdev:	1187.45
ch:	2	min:	-1808	max:	+1749	mean:	-92.4	stdev:	475.84
ch:	4	min:	+637	max:	+652	mean:	+644.0	stdev:	4.71
ch:	5	min:	+506	max:	+761	mean:	+662.6	stdev:	42.63
ch:	6	min:	+2450	max:	+2463	mean:	+2456.1	stdev:	3.89
ch:	7	min:	+2363	max:	+2678	mean:	+2482.9	stdev:	37.79
ch:	8	min:	-4957	max:	+6899	mean:	-14.6	stdev:	1642.71
ch:	9	min:	-3573	max:	+6394	mean:	-56.8	stdev:	1259.54
ch:	10	min:	-56	max:	-53	mean:	-54.8	stdev:	0.73
ch:	11	min:	-99	max:	-55	mean:	-70.6	stdev:	9.15
ch:	12	min:	-1871	max:	-1868	mean:	-1869.6	stdev:	0.49
ch:	32	min:	+17020	max:	+17257	mean:	+17157.5	stdev:	86.48
ch:	40	min:	-32574	max:	-32502	mean:	-32545.1	stdev:	26.16
ch:	41	min:	-18828	max:	-18557	mean:	-18667.7	stdev:	82.57
ch:	42	min:	-31455	max:	-31455	mean:	-31455.0	stdev:	0.0
ch:	255	min:	+32752	max:	+32752	mean:	+32752.0	stdev:	0.00

3.3 On the surface after damage to all four microstructure probes:

Note the high min and max values in the shear and temperature probe channels. In some cases these values may slowly increase over a number of days indicating minor damage that allows water to slowly ingress into the tip of a microstructure probe.

ch:	0	min:	+0	max:	+1	mean:	+0.8	stdev:	0.42
ch:	1	min:	-466	max:	+336	mean:	-42.4	stdev:	146.83
ch:	2	min:	-274	max:	+391	mean:	+35.6	stdev:	104.24
ch:	4	min:	+602	max:	+8239	mean:	+5077.3	stdev:	2126.21
ch:	5	min:	-32212	max:	+32767	mean:	+813.8	stdev:	24494.84
ch:	6	min:	+18392	max:	+22723	mean:	+20113.3	stdev:	1325.76
ch:	7	min:	-32128	max:	+32767	mean:	+11801.5	stdev:	24875.95
ch:	8	min:	-15654	max:	+32767	mean:	-95.5	stdev:	6832.56
ch:	9	min:	-14848	max:	+32767	mean:	-35.6	stdev:	7129.56
ch:	10	min:	-49	max:	-47	mean:	-47.8	stdev:	0.43
ch:	11	min:	-106	max:	-32	mean:	-65.9	stdev:	20.52
ch:	12	min:	-1969	max:	-1738	mean:	-1803.4	stdev:	25.03
ch:	32	min:	+16828	max:	+17321	mean:	+17118.8	stdev:	182.82
ch:	40	min:	-31858	max:	-31625	mean:	-31746.0	stdev:	75.62
ch:	41	min:	-31242	max:	-30702	mean:	-31108.4	stdev:	139.15
ch:	42	min:	-31458	max:	-31458	mean:	-31458.0	stdev:	0.00
ch:	255	min:	+32752	max:	+32752	mean:	+32752.0	stdev:	0.00

3.4 MicroRider with EM Sensor in Lab, Test Probes Installed

Calibrate All results from and healthy MicroRider with EM sensor:

ch:	0	min:	+2	max:	+4	mean:	+3.1	stdev:	0.39
ch:	1	min:	-122	max:	+201	mean:	+3.2	stdev:	56.36
ch:	2	min:	-106	max:	+133	mean:	+4.5	stdev:	25.66
ch:	4	min:	-60	max:	-58	mean:	-58.5	stdev:	0.51
ch:	5	min:	-60	max:	-39	mean:	-49.4	stdev:	3.07
ch:	6	min:	-74	max:	-73	mean:	-73.6	stdev:	0.49
ch:	7	min:	-70	max:	-50	mean:	-60.4	stdev:	3.40
ch:	8	min:	+1	max:	+11	mean:	+6.4	stdev:	2.05
ch:	9	min:	+1	max:	+9	mean:	+5.0	stdev:	2.01
ch:	10	min:	-19	max:	-17	mean:	-18.0	stdev:	0.41
ch:	11	min:	-20	max:	-13	mean:	-17.5	stdev:	1.41
ch:	12	min:	+571	max:	+574	mean:	+572.3	stdev:	0.48
ch:	15	min:	-12834	max:	+11265	mean:	-776.7	stdev:	6316.27
ch:	32	min:	+19448	max:	+19462	mean:	+19454.3	stdev:	2.46
ch:	40	min:	-16387	max:	-16385	mean:	-16386.2	stdev:	0.46
ch:	41	min:	-16391	max:	-16390	mean:	-16390.3	stdev:	0.46
ch:	42	min:	-31484	max:	-31484	mean:	-31484.0	stdev:	0.00
ch:	144	min:	+2382	max:	+2738	mean:	+2507.9	stdev:	119.52
ch:	255	min:	+32752	max:	+32752	mean:	+32752.0	stdev:	0.00

3.5 Unshielded MicroCTD in Lab, Test Probes Installed

Calibrate all Results from a healthy unshielded MicroCTD:

-1	0		. –		. 7				0 47
ch:	0	min:	+5	max:	+7	mean:	+5.7	stdev:	0.47
ch:	1	min:	-48	max:	+47	mean:	+4.9	stdev:	17.30
ch:	2	min:	-117	max:	+121	mean:	+7.1	stdev:	37.03
ch:	4	min:	-10	max:	-9	mean:	-9.4	stdev:	0.48
ch:	5	min:	-9	max:	+10	mean:	+1.8	stdev:	3.33
ch:	8	min:	-140	max:	+158	mean:	+7.9	stdev:	103.63
ch:	9	min:	-137	max:	+152	mean:	+7.1	stdev:	100.57
ch:	10	min:	+158	max:	+160	mean:	+159.2	stdev:	0.42
ch:	11	min:	+159	max:	+163	mean:	+160.6	stdev:	1.01
ch:	12	min:	-1365	max:	-1362	mean:	-1363.8	stdev:	0.38
ch:	32	min:	+26470	max:	+26489	mean:	+26482.3	stdev:	5.43
ch:	40	min:	+3293	max:	+3296	mean:	+3294.9	stdev:	0.66
ch:	41	min:	+12	max:	+13	mean:	+12.0	stdev:	0.16
ch:	42	min:	+1275	max:	+1275	mean:	+1275.0	stdev:	0.00
ch:	48	min:	-21310	max:	-21286	mean:	-21297.2	stdev:	4.11
ch:	49	min:	+4	max:	+11	mean:	+9.2	stdev:	0.55
ch:	50	min:	-30739	max:	-30724	mean:	-30730.5	stdev:	2.33
ch:	52	min:	+1393	max:	+1681	mean:	+1423.7	stdev:	15.44
ch:	53	min:	+5931	max:	+6181	mean:	+5941.6	stdev:	11.02
ch:	64	min:	-5141	max:	-5139	mean:	-5140.0	stdev:	0.34
ch:	65	min:	-5199	max:	-5149	mean:	-5173.6	stdev:	9.24
ch:	255	min:	+32752	max:	+32752	mean:	+32752.0	stdev:	0.00

3.6 Shielded MicroCTD in Lab, Test Probes Installed

Calibrate all Results from a healthy shielded MicroCTD, sheilding inluded placing the entire MicroCTD in a carboard tube covered in alluminum foil. The shielding was grounded to the rear sealing nut of the MicroCTD using a cable with aligator clips:

ch:	0	min:	+5	max:	+6	mean:	+5.8	stdev:	0.43
ch:	1	min:	-33	max:	+34	mean:	+4.6	stdev:	11.93
ch:	2	min:	-19	max:	+24	mean:	+6.2	stdev:	7.63
ch:	4	min:	-11	max:	-9	mean:	-9.8	stdev:	0.41
ch:	5	min:	-9	max:	+11	mean:	+1.4	stdev:	3.37
ch:	8	min:	+5	max:	+11	mean:	+7.9	stdev:	1.03
ch:	9	min:	-16	max:	+25	mean:	+7.0	stdev:	2.37
ch:	10	min:	+158	max:	+160	mean:	+159.1	stdev:	0.36
ch:	11	min:	+159	max:	+163	mean:	+161.0	stdev:	1.05
ch:	12	min:	-1354	max:	-1352	mean:	-1353.6	stdev:	0.50
ch:	32	min:	+26427	max:	+26445	mean:	+26438.2	stdev:	5.28
ch:	40	min:	+170	max:	+171	mean:	+170.5	stdev:	0.50
ch:	41	min:	+16261	max:	+16262	mean:	+16261.7	stdev:	0.45
ch:	42	min:	+1273	max:	+1273	mean:	+1273.0	stdev:	0.00
ch:	48	min:	-21152	max:	-21130	mean:	-21140.6	stdev:	3.89
ch:	49	min:	+5	max:	+11	mean:	+9.2	stdev:	0.51
ch:	50	min:	-30885	max:	-30869	mean:	-30877.2	stdev:	2.58
ch:	52	min:	+2900	max:	+3007	mean:	+2964.9	stdev:	13.09
ch:	53	min:	-13989	max:	-13539	mean:	-13976.3	stdev:	19.80
ch:	64	min:	-5141	max:	-1044	mean:	-5131.8	stdev:	181.01
ch:	65	min:	-5201	max:	-5146	mean:	-5173.6	stdev:	8.46
ch:	255	min:	+32752	max:	+32752	mean:	+32752.0	stdev:	0.00

-End of document-