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INTRODUCTION INTRODUCTION

1 Introduction

The data collected from shear probes is very sensitive to contamination from various source of
vibration and movements. To mitigate this effect, the spectra of turbulence shear are cleaned

by removing their vibration-coherent components using the technique of Goodman et al. (2006),
which relies on estimating the coherency between shear-probe and vibration signals. However,
estimates of coherency are always larger than zero when using a finite length of data, even when
the signals are statistically independent and completely incoherent. The unavoidably finite co-
herency biases low the cleaned spectra and leads to an underestimation of the rate of dissipa-
tion of kinetic energy from the variance of shear. The bias decreases with increasing number of
fft-segments that are used to estimate a spectrum of shear and its coherency with vibrations.
The bias increases with the number of vibration (or other contamination) signals that are used to
clean the spectrum of the measured shear. The bias is wavenumber independent, and does not
depend on the variance of either the vibrations or the shear.

The paper presented in this Technical Note provides a theoretical derivation of the bias and an
equation that can be used to correct the bias of the spectra. This correction has now been imple-
mented in the ODAS Matlab Library, released under version 4.5.

‘jROCKLAND ‘jROCKLAND
A SCIENTIFIC ©2022 Rockland Scientific A SCIENTIFIC



Generated using the official AMS IATEX template v5.0 two-column layout. This work has been submitted for
publication. Copyright in this work may be transferred without further notice, and this version may no longer be

accessible.

The bias in coherent-noise removal

ROLF G. LUECK * AND DUNCAN MACINTYRE T AND JUSTINE MCMILLAN ¥

Rockland Scientific, Victoria, Canada

ABSTRACT

A simple formula is provided for correcting the bias of vibration-coherent noise removal. Spectra of turbulence shear are often cleaned
by removing their vibration-coherent components using the technique of Goodman et al. (2006), which relies on estimating the coherency
between shear-probe and vibration signals. However, estimates of coherency are always larger than zero when using a finite length of data,
even when the signals are statistically independent and completely incoherent. The unavoidably finite coherency biases low the cleaned
spectra and leads to an underestimation of the rate of dissipation of kinetic energy from the variance of shear. The bias decreases with
increasing number of fft-segments that are used to estimate a spectrum of shear and its coherency with vibrations. The bias increases with
the number of vibration (or other contamination) signals that are used to clean the spectrum of the measured shear. The bias is wavenumber
independent, and does not depend on the variance of either the vibrations or the shear.
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1. Introduction

Measuring the rate of dissipation of turbulent kinetic
energy, €, is important for understanding ocean mixing be-
cause it provides a means to estimate the diapycnal eddy
diffusivity (Osborn 1980). Such measurements are usu-
ally done with velocity shear probes mounted on profilers
which, like nearly all fluid velocity sensors, measure ve-
locity relative to the platform to which they are mounted
(Siddon and Ribner 1965; Siddon 1971; Osborn 1974). Vi-
brations of the platform induce a contamination that must
be removed from the measured shear signal because they
can raise considerably the spectrum of shear at the frequen-
cies of the vibrations, for example Figure 4 in Levine and
Lueck (1999). The wavenumber-dependent bias induced
by vibrations causes an overestimation of the rate of dissi-
pation of kinetic energy, because it is proportional to the
variance of shear, which is usually derived by integrating
the spectrum of shear using

15 (ov)? 15 [ 15 [k
€ 2V(8x) 21//0 (k)dk 21//0 (k)dk

where v is the kinematic viscosity, v is any velocity com-
ponent orthogonal to the direction of profiling, x is any
direction of profiling, W(k) is the spectrum of shear, k is
the wavenumber in the x-direction and k. < oo is an upper
wavenumber imposed by practical considerations (Taylor
1935; Pope 2009).
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A popular method for removing vibration-induced con-
tamination of a shear-probe measurements is that of Good-
man et al. (2006) which relies on estimating the multi-
variate squared-coherency between the signals produced
by shear-probes and vibration sensors to identify the vari-
ance in the shear-probe signals that is induced by platform
vibrations. However, the squared-coherency (hereafter,
coherency) is a positive definite quantity that is always
bigger than zero if it is estimated from a finite length of
data, even when the the signals are completely incoherent.
Consequently, the technique of Goodman et al. (2006) will
remove some spectral variance even when its application
is not required.

In section 2 we examine the principal nature of coherent
noise removal. In section 3 we demonstrate the bias by
(i) using statistically independent sequences for shear and
vibrations, for which the shear signals do not require noise
removal, (i) adding several sinusoidal coherent compo-
nents to these sequences that do require removal, and (iii)
using real shear-probe and vibration signals collected in
a tidal channel where the shear is strong and the vibra-
tions are weak. The results are discussed and concluded in
section 4.

2. Background

The multivariate method of coherent noise removal of
Goodman et al. (2006) is most easily understood in its
univariate form. Let a shear-probe measurement, §(x), be
given by

§(x)=s(x)+h(x)*a(x)+e(x) 2)
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where s is the oceanic shear, a is the vibration of the
platform in the direction of sensitivity of the shear probe,
e is some added noise in the shear-probe measurement, £
is the impulse response that relates the measured shear-
probe signal to the vibrations, and the symbol * demotes
a convolution. It is seldom possible to derive & from an
analysis of the elastic properties of the platform that carries
the shear probes. Instead, the impulse response is usually
estimated from the simultaneous measurements of § and a.
The Fourier transform of (2) is

S(k)=S(k)+H(k)A(k)+E (k) 3)

where the uppercase symbols are the transforms of their
lowercase versions and k is the wavenumber. Multiplying
both sides of (3) by their respective complex conjugates
gives

§$*=SS*+ HH*AA*+EE*+ @
2R(SH*A™) +2R(SE*)+R(HAE™)

where the operator R extracts the real part. Averaging (4)
reduces the last three terms zero because there should be
no relationship between oceanic shear and platform vibra-
tions (SH*A*), and between the added noise and either the
oceanic shear (SE*) or the vibrations (HAE*). Thus, the
spectrum of the measured shear is

Css = Cys +|H[*Caaq +Cee 5)

where each term is implicitly a function of wavenumber,
k. An estimate of the transfer function H is provided
by multiplying both sides of (3) by A* and invoking the
expectation of the various terms, which yields

Csq =HCyq (6)

where Cj,, is the cross-spectrum of the measured shear and
vibration. Substituting into (5) gives

C: 2
C§A=Css+|c:m| +Cee = Css+Cs5 50+ Coe (7)
aa
where )
|C§a|
r =--—%_ 8
o ®

is the coherency between the vibration and shear-probe sig-
nals. Thus, the best estimate of the oceanic shear spectrum
is

Cos (k)= (1-T2,(0)) Css() = Cee (k) (©)

where the spectrum of the measurement noise, C,. (k) is
estimated by other means or ignored because it is usually
small. The multivariate method of Goodman et al. (2006)
adjusts downward the spectrum of all shear-probe signals
using all vibration sensors simultaneously, and takes into
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FiG. 1. The average of 2002 spectra of low-pass filtered white Gaus-
sian noise (solid line) and the average of the same spectra after they have
been cleaned using Ny =2 incoherent vibration signals (dotted line),
using spectra formed from Ny = 4 fit-segments.

account the partial coherency between vibration signals.
But, it does rely on an estimate of the coherency, which
is always positive (0 < I" < 1) for any estimate that uses a
finite length of data, and will reduce the spectrum of shear
even at wavenumbers at which there are no vibrations.

3. Spectral Bias Examples

In this section we demonstrate the bias induced by
vibration-coherent noise removal, how this bias depends
on the number of fft-segments that are used to estimate a
shear spectrum and on the number of vibration signals that
are used to clean a shear spectrum.

The statistical reliability of coherency estimates im-
proves with increasing length of data used to make this
estimate. In particular, for a finite length of data the es-
timate improves with the number of fft-segments that are
used. We calculate spectra and cross-spectra using the pe-
riodogram method. The span of data used to estimate a
spectrum is decimated into Ny segments that overlap by
50%. Each of these segments is de-trended and then ta-
pered with a cosine window before it is transformed with
a fast Fourier transform. The first half (plus one) of the
transforms are retained. For auto spectra, the transform
magnitudes are squared and added to an accumulator. For
cross-spectra, the transform is multiplied by the complex
conjugate of the transform of the other signal, and added
to an accumulator. After the last transformed segment is
added to the accumulator, the values are divided by the
number of segments used, Ny, to produce the average pe-
riodogram. This periodogram is then scaled to produce
a spectrum. This spectrum has the property that its inte-
gral over all wavenumbers (approximated by, for example,
the trapezoidal method) equals the variance of the original
signal, or the co-variance of the original pair of signals.
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F1G. 2. (a) — The variance of the Gaussian noise signals (disks)
(determined by spectral integration) and the variance of the same signal
after the removal of vibration-coherent noise (squares), as a function of
the number of fft-segments, Ny, used to estimate the spectra. (b) —
The ratio of the variance of the cleaned and original signals (disks) and
a mathematical model of their ratio. Th number of vibration signals is
Ny =2.

a. White noise

Two shear-probe signals that are completely unrelated to
vibration signals are simulated using independent Gaussian
random sequences, with a sampling rate of 512m~". These
signals are low-pass filtered at 98 cpm to simulate a typical
data acquisition system, using a cascade of two 4-pole But-
terworth filters. All auto- and cross-spectra are estimated
using fft-segments of length 1024 samples (i.e., 2m). The
number of fft-segments used to estimate the spectra is var-
ied from Ny = 3 to 50. The calculations are repeated 1001
times to determine the average spectrum for a particular
Ny . These calculations are repeated using Ny =1 to 4
vibration signals. The vibration-coherent noise is removed
from the shear spectra to produce ‘cleaned’ spectra, even
though there is no coherency between the vibration and
shear-probe signals because they are independent Gaus-
sian sequences.

The average cleaned shear spectrum is reduced by a fac-
tor of approximately 2 when the number of fft-segments
is only four and the number of vibration signals is two
(Fig. 1). The variance of the original shear signals is deter-
mined by integrating the spectrum over all wavenumbers
and equals 3.9x 107352 for all choices of N r (Fig. 2a
disks). In contrast, the variance determined from an inte-
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FiGc. 3. The ratio of the variance derived from the cleaned and the
original spectra of Gaussian white noise signals (Var ratio), divided by
the mathematical model of (11) less 1, as a function of the number of
fTt-segments, Nz, used to estimate the spectra, for Ny = 1 to 4 vibration
signals.

gration of the cleaned spectra is smaller (Fig. 2a squares).
The ratio of the variance determined from the cleaned and
original spectra (Fig. 2b) is approximately

(10)

The ratio of variance (10) is independent of the variance
of the shear-probe and the vibration signals, and is also
independent of the number of shear-probe signals that are
cleaned simultaneously by the vibration-coherent noise re-
moval algorithm. However, the results do depend on the
number of vibration signals, Ny, that are used to clean
the shear-probe spectra. A model expression that fits the
simulations to within better than +0.75 %, for Ny <4, is

1.02Ny
Ny

R=1- (11)
(Fig. 3). That is, (11) provides a model for the amount
by which the vibration-coherent noise removal algorithm
reduces the spectrum of a shear-probe measurement at all
wavenumbers, due to estimating the spectrum with a finite
number of fft-segments, N .

b. Coherent sinusoidal signals

Real platform vibrations tend to be quasi-sinusoidal.
Real vibrations were simulated by adding 4 sinusoidal
components to the Gaussian vibration signal. A fraction
of these vibrations were also added to the shear-probe sig-
nals to produce strongly contaminated signals (Fig. 4b).
The vibration-coherent noise removal algorithm readily
removes the sinusoidal components from the shear-probe
signals even when Ny =3 (Fig. 4a). However, the en-
tire shear-probe spectra are still biased low by the factor
given by (11). For example, the wavenumber indepen-
dent part of the original shear spectra is 4 x 107 s~2cpm™!
(Fig. 4b), while the same range of the cleaned spectra is
1.3x 107> s2cpm™! (Fig. 4a), i.e. three time smaller.
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F1G. 4. (a) The average spectra for shear-probes 1 and 2 after cleaning
using Ny =3 and Ny = 2. (b) The same spectra before cleaning.

c. Real shear-probe signals

Shear-probe signals are not Gaussian white noise. They
have a spectrum that rises with increasing wavenumber,
reaches a peak and diminishes rapidly with increasing
wavenumber due to viscosity. Does the model of (11)
hold for real oceanic turbulence signals? We use 915 m of
data collected in a tidal channel that have been processed
according to Lueck (2021b) to demonstrate the effects of
vibration-coherent noise removal using real shear-probe
and vibration data. The length of the fft-segments is 0.5 m.
For these data, the shear signals are strong while the plat-
form vibrations are weak. That is, there is very little
vibration-induced contamination in the four shear-probe
signals. The instrumentation had two vibration sensors
mounted close to its four shear probes. When using only
Ny =3 flt-segments, the average spectrum of the shear-
probe signals is reduced by a factor of approximately three
just as was found for white noise signals (Fig. 5). The ra-
tio of the four-probe average rate of dissipation, calculated
using (1) and a value k. = 150cpm, for the cleaned and
original spectra follows closely the model of (11) (Fig. 6).
The modelled dissipation rate is higher than the observed
rate by less than 0.5 % for Ny > 20.

4. Discussion and conclusions

The technique of vibration-coherent noise removal is not
specific to just shear probes and vibration sensors. Itcan be
used to clean any signal for which there is a simultaneous
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FiG. 5. The average of 915 spectra from each of 4 shear probes
in a tidal channel (dotted line) using Ny =3 fit-segments, and the
average spectrum after the shear-probe signals were cleaned using Ny =
2 vibration signals (dot-dash line), and the spectral model for shear of
Lueck (2021b) (solid line).
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Fi1G. 6. The ratio of the rate of dissipation of kinetic energy estimated
using the clean spectra, €., and the original spectra, €, for spectra
derived from N fft-segments (disks), and the model of (11) (line).

measure of the source of contamination. The measure of
the contamination only needs to be linearly related to the
actual contamination of the signal that one wishes to clean.

When the data segments that are used to estimate a
spectrum are short (i.e., the number of fft-segments used
to form the spectrum, N, is small), the bias introduced by
the coherent noise removal technique is quite large, but it is
wavenumber (or frequency) independent. Cleaned spectra
should be corrected (boosted) using the model of (11).

The degrees of freedom of a spectral estimate (derived
using the periodogram technique) is approximately 2N ¢
(Nuttall 1971). The degrees of freedom of a cleaned spec-
trum is smaller by 2Ny, because that many degrees of
freedom are consumed in the estimation of the coherency.
Therefore, one should never use fewer than 3 + Ny fft-
segments, and preferably many more.

The 95 % confidence interval of a spectral estimate of
turbulent shear is

exp (£1.9601,v) (12)



where
(13)

(Lueck 2021a). When estimating the statistical uncertainty
of a spectrum, the value of Ny in (13) must be reduced by
the number of vibration signals, Ny, that are used to clean
the spectrum. That is, (13) should be replaced by

5 ~7/9
0-1%1‘P:Z(Nf ~Nv) /

(14)
when estimating the confidence limits of a shear spectrum
that has been cleaned. Although the bias induced by spec-
tral cleaning is significant, it is always smaller than the
95 % confidence interval of a turbulent shear spectrum.

However, the spectral bias should not be ignored for
two reasons. Integrating the spectrum to obtain the shear
variance and, hence, an estimate of the rate of dissipation,
produces estimates with a much tighter confidence inter-
val than (12). However, integrating the spectrum does not
reduce the bias. When trying to obtain high spatial reso-
lution of dissipation estimates it is necessary to estimate
spectra using very few fft-segments. The bias will be large
(a factor of 3) such seen in Fig. 9¢ in Wijesekera et al.
(2020) where the authors used 1 s of data and fft-segments
of 0.5 s to estimate their spectra, thatis Ny =3 and Ny =2.
However, in many cases the bias has largely gone unnoticed
because typical spectral estimates use Ny > 9 and Ny =2
for which the bias is less than ~20 %, while the confidence
interval range from 0.36 to 2.8.
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