Limiting the Size and Duration of Data Files: autoexec.bat

When preparing for a long duration deployment it is important to consider the length of the data file that will be generated. MicroRiders are often deployed for days or weeks at a time. The default setting on RSI instruments is to collect a single data file unlimited in size. A file collected over days or weeks can be unmanageable in post processing. Furthermore, a file can be lost if the instrument is turned off incorrectly while recording. To limit the size and duration of resulting data files use the flag -t followed by the number of records you would like in each file (1 record is approximately 1 second) . Please note that you will loose 30 to 40 seconds of data every time a file is written; users often use 3600 records (approximately 1 hour). To change your system to automatically use the command odas5ir -f setup.cfg -l 3000 -t 3600 you will need to change the autoexec.bat file:

1. Download the file to your data acquisition computer,
2. Edit the contents of the file to be odas5ir -f setup.cfg -l 3000 -t 3600, or the number of records you prefer,
3. Delete the existing autoexec.bat off the CF card,
4. Upload the new autoexec.bat file to the CF card.

Please note the flag -l 3000 sets the clock on the instrument. For instruments with the Tidal Energy Configuration, which use a sample rate of 1024Hz, the clock must be set to -l 6000.

Warning: Commands on the autoexec.bat file are case sensitive.

To learn more about PicoDOS commands, please review the ODAS5-IR User Guide available in our downloads section.

Canada’s first three-glider mission maps whale habitat

Ocean Tracking Network:

For the first time in Canada, a triple glider project has successfully mapped out critical gray whale habitat off the west coast of Vancouver Island. While previous missions have deployed one or two gliders, this Whales, Habitat, and Listening (WHaLe) project—funded by the Marine Environmental Observation, Prediction, and Response (MEOPAR)—is the first to fly three coordinated gliders.

In addition to the common suite of water property sensors—temperature, salinity and oxygen—the gliders on this mission carried a broadband hydrophone to identify and count whale vocalizations, an echo sounder to remotely quantify zooplankton biomass variability, and optical instrumentation identifying phytoplankton to elucidate the major components of the whale food chain. The University of British Columbia glider also carried a specialized Rockland Scientific sensor suite for measuring ocean turbulence, to better understand why submarine canyons create such favourable habitat for the whales.

Continue Reading…